

South East Strategic Reservoir Option Preliminary Environmental Information Report

Appendix 6.1 Macroinvertebrate, invasive species and depressed river mussel baseline surveys (2024)

Date: October 2025

Contents

1	Purp	ose of this appendix	1
2	Surv	ey sites	2
	2.2	Invasive Non-Native Species	2
	2.3	Macroinvertebrates	4
	2.4	Depressed river mussel	7
3	Meth	nodologies	9
	3.2	Invasive Non-Native Species	9
	3.3	Macroinvertebrates	. 10
	3.4	Depressed river mussel	. 11
4	Resu	ılts	. 13
	4.2	Invasive Non-Native Species	. 16
	4.3	Macroinvertebrates	. 27
	4.4	Depressed river mussel	. 47
Refer	ences		
		ap of INNS survey locations	
		ap of macroinvertebrate survey locations	
		ap of depressed river mussel survey locations	
List	of ta	bles	
	2.2 N	NNS survey locations (sites where land access was available in 2024 are highlighted in grey)	n
Table	2.3 D	rey) Pepressed river mussel survey locations (sites where land access was available in 2024 are lighlighted in grey)	
Table		QR's and WFD status thresholds for WHPT NTAXA and WHPT ASPT metrics	
		nvironmenal variables on the River Thames and Ock catchment.	
		NNS recorded on the River Thames in 2024.	
		NNS recorded within the Ock catchment in 2024.	
		esults of macroinvertebrate analysis from 2023/2024 River Thames surveys	
		esults of macroinvertebrate analysis from 2024 Ock catchment surveys.	. 28
rable		table showing the notable macroinvertebrate species recorded at the 2024 River Thames survey ocations	40
Table		fussel species recorded on the River Thames in 2024	. 42 . 47

1 Purpose of this appendix

- 1.1.1 Based on the recommendations of the Gate 2 Environmental Appraisal Report (EAR) (Atkins, 2022) and supporting workstreams for the South-East Strategic Reservoir Option (SESRO), a requirement for further surveys was identified, in order to update the limited understanding of the baseline sensitivity of the aquatic environment within the Ock catchment and the River Thames.
- 1.1.2 This note presents methods and results of the Invasive Non-Native Species (INNS), macroinvertebrates and depressed river mussel *Pseudanodonta complanata* surveys undertaken by Ricardo in 2024.

Classification - Public Page 1 of 53

2 Survey sites

- 2.1.1 INNS, macroinvertebrate and depressed river mussel survey locations were selected following a principally desk-based exercise given access restrictions and sensitivities at the time of the Gate 2 environmental assessments. Locations were selected to broadly characterise the Study Area and the WFD water bodies that underpin it, supporting future environmental assessments of SESRO (Table 2.1, Annex 1, Annex 2, and Annex 3).
- 2.1.2 River Thames surveys were undertaken during 2024, and Ock catchment watercourse surveys were undertaken as far as possible from available access during 2024, though access availability was limited in this period.

2.2 Invasive Non-Native Species

2.2.1 Table 2.1 provides a summary of the Gate 3 INNS survey locations in 2024, including their corresponding NGR. Survey locations are shown in Annex 1.

Table 2.1 INNS survey locations (sites where land access was available in 2024 are highlighted in grey).

Waterbody	Site ID	Final NGR	Initial NGR	NGR changed	Surveyed in spring 2024	Surveyed in summer 2024
Ock catchment	Multi_Env_1	SU454209009 5	SU454209009 5	×	*	×
	Multi_Env_2	SU438119050 5	SU438119050 5	×	√	√
	Multi_Env_3	SU429509044 8	SU429509044 8	×	√	√
	Multi_Env_4	SU426629157 9	SU425909119 1	√	√	✓
	Multi_Env_5	SU436439148 5	SU436699134 3	√	√	✓
	Multi_Env_6	SU431199174 5	SU431199174 5	×	√	✓
	Multi_Env_7	SU435299238 9	SU435299238 9	×	√	✓
	Multi_Env_8	SU442319380 0	SU438279318 0	√	√	✓
	Multi_Env_9	SU454749379 1	SU454749379 1	×	√	✓
	Multi_Env_10	SU427059481 0	SU427059481 0	*	*	×

Appendix 6.1 - Macroinvertebrate, invasive species and depressed river mussel baseline surveys (2024)

Classification - Public Page 2 of 53

Waterbody	Site ID	Final NGR	Initial NGR	NGR changed	Surveyed in spring 2024	Surveyed in summer 2024
	Multi_Env_11	SU431129488 4	SU431129488 4	×	×	×
	Multi_Env_12	SU431699466 9	SU431699466 9	×	×	×
	Multi_Env_13	SU441429490 6	SU441429490 6	*	*	×
	Multi_Env_14	SU452629454 3	SU452629454 3	×	√	√
	Multi_Env_15	SU460659489 7	SU460659489 7	×	√	√
	Multi_Env_16	SU469639464 1	SU469639464 1	*	✓	✓
	Multi_Env_17	SU468059512 7	SU468059512 7	*	✓	√
	Multi_Env_18	SU440459593 4	SU440459593 4	*	*	*
	Multi_Env_19	SU453319621 7	SU453319621 7	*	*	×
	Multi_Env_20	SU455249550 6	SU455249550 6	*	*	×
	Multi_Env_21	SU464619559 0	SU464619559 0	*	*	×
	Multi_Env_22	SU468469595 6	SU468469595 6	*	*	×
	Multi_Env_23	SU466899690 3	SU466899690 3	*	*	✓
	Multi_Env_24	SU477719648 6	SU477719648 6	*	*	×
	Multi_Env_25	SU477399612 7	SU476339608 9	✓	*	×
	Multi_Env_26	SU494549483 5	SU494549483 5	*	*	×
	Multi_Env_27	SU499629418 7	SU499629418 7	*	*	×
	Multi_Env_28	SU484339539 0	SU484319539 1	√	*	×
River Thames	Ses_Eco_4_S1	SU496129658 7	SU496129658 7	*	✓	√

Classification - Public Page 3 of 53

Waterbody	Site ID	Final NGR	Initial NGR	NGR changed	Surveyed in spring 2024	Surveyed in summer 2024
	Ses_Eco_5_S1	SU497749486 2	SU497749486 2	*	✓	✓
	Ses_Eco_5_S2	SU501819441 8	SU501819441 8	×	√	✓
	Ses_Eco_5_S3	SU547909472 1	SU547909472 1	×	√	✓
	Ses_Eco_6a_S 2	SU651937742 6	SU651937742 6	×	√	√
	Ses_Eco_6b_S 1	SU782198512 6	SU782198512 6	*	√	✓
	Ses_Eco_6c_S 1	SU903148555 4	SU903148555 4	*	√	✓
	Ses_Eco_6c_S 2	SU985207690 0	SU985207690 0	×	√	√
	Ses_Eco_7_S1	SU992917550 7	SU992917550 7	*	√	✓
	Ses_Eco_8_S1	TQ01077723 80	TQ010777238	*	√	✓
	Ses_Eco_9_S1	TQ04999683 45	TQ049996834 5	*	√	✓
	Ses_Eco_10_S 1	TQ07903663 64	TQ079036636 4	×	✓	√

2.3 Macroinvertebrates

2.3.1 Table 2.2 provides a summary of the Gate 3 macroinvertebrate survey locations in 2024, including their corresponding NGR. Survey locations are shown in Annex 2.

Table 2.2 Macroinvertebrate survey locations (sites where land access was available in 2024 are highlighted in grey).

Water- body	Site ID	Active NGR	Original NGR	NGR change d from Origina I NGR	Surveye d in spring 2024	Surveye d in summer 2024	Surveye d in autumn 2024
	Multi_Env_1	SU45420900 95	SU45420900 95	×	×		

Classification - Public Page 4 of 53

Water- body	Site ID	Active NGR	Original NGR	NGR change d from Origina I NGR	Surveye d in spring 2024	Surveye d in summer 2024	Surveye d in autumn 2024
Ock catchme	Multi_Env_2	SU43811905 05	SU43811905 05	*	√	✓	✓
nt	Multi_Env_3	SU42950904 48	SU42950904 48	×	√	×	✓
	Multi_Env_4	SU42662915 79	SU42590911 91	✓	√	*	✓
	Multi_Env_5	SU43643914 85	SU43669913 43	✓	√	✓	√
	Multi_Env_6	SU43119917 45	SU43119917 45	*	✓	√	✓
	Multi_Env_7 SU435		SU43529923 89	*	√	*	✓
	Multi_Env_8	SU44231938 00	SU43827931 80	✓	√	*	✓
	Multi_Env_9 SU45474937 91		SU45474937 91	*	✓	√	✓
	Multi_Env_10	SU42705948 10	SU42705948 10	*	×	*	×
	Multi_Env_11	SU43112948 84	SU43112948 84	*	×	*	×
	Multi_Env_12	SU43169946 69	SU43169946 69	*	×	*	×
	Multi_Env_13 SU44142949		SU44142949 06	*	×	*	×
	Multi_Env_14	SU45262945 43	SU45262945 43	×	√	✓	√
	Multi_Env_15	SU46065948 97	SU46065948 97	*	✓	*	✓
	Multi_Env_16	SU46963946 41	SU46963946 41	*	✓	*	✓
	Multi_Env_17	SU46805951 27	SU46805951 27	*	✓	✓	✓
	Multi_Env_18	SU44045959 34	SU44045959 34	*	*	*	×
	Multi_Env_19	SU45331962 17	SU45331962 17	*	*	*	×

Classification - Public Page 5 of 53

Water- body	Site ID	Active NGR	Original NGR	NGR change d from Origina I NGR	Surveye d in spring 2024	Surveye d in summer 2024	Surveye d in autumn 2024
	Multi_Env_20	SU45524955 06	SU45524955 06	*	*	*	*
	Multi_Env_21	SU46461955 90	SU46461955 90	*	*	*	*
	Multi_Env_22	SU46846959 56	SU46846959 56	*	*	*	*
	Multi_Env_23	SU46689969 03	SU46689969 03	*	*	√	*
	Multi_Env_24	SU47771964 86	SU47771964 86	*	*	*	*
	Multi_Env_25	SU47739961 27	SU47633960 89	√	×	*	×
	Multi_Env_26 SU4945494 35 Multi_Env_27 SU4996294 87		SU49454948 35	×	×	×	×
			SU49962941 87	×	×	×	×
	Multi_Env_28	SU48433953 90	SU48431953 91	*	×	*	×
River Thames	Ses_Eco_4_S 1	SU49709963 41	SU49709963 41	×	√	√	√
	Ses_Eco_5_S 1	SU49734948 79	SU49734948 79	*	✓	✓	✓
	Ses_Eco_5_S 2	SU50283944 22	SU50283944 22	*	✓	✓	✓
	Ses_Eco_5_S 3	SU54783947 46	SU54783947 46	*	×	✓	✓
	Ses_Eco_6a_ S2	SU65516774 60	SU65516774 60	*	✓	✓	✓
	Ses_Eco_6b_ S1	SU78263851 24	SU78263851 24	×	√	√	√
	Ses_Eco_6c_ S1	SU90407854 96	SU90407854 96	*	✓	√	√
	Ses_Eco_6c_ S2	SU98526768 22	SU98526768 22	×	✓	✓	√
	Ses_Eco_7_S 1	SU99242755 00	SU99242755 00	*	✓	✓	✓

Classification - Public Page 6 of 53

Water- body	Site ID	Active NGR	ctive NGR Original NGR		Surveye d in spring 2024	Surveye d in summer 2024	Surveye d in autumn 2024
	Ses_Eco_8_S 1	TQ01190723 59	TQ01245722 92	✓	√	✓	✓
	Ses_Eco_9_S 1	TQ04999683 45	TQ04999683 45	*	✓	✓	√
	Ses_Eco_10_ S1	TQ07945663 41	TQ07945663 41	*	✓	√	√

2.4 Depressed river mussel

Table 2.3 provides a summary of the Gate 3 depressed river mussel survey locations in 2024, including their corresponding NGR. Survey locations are shown in Annex 3.

Table 2.3 Depressed river mussel survey locations (sites where land access was available in 2024 are highlighted in grey).

Waterbody	Site ID	Active NGR	Original NGR	NGR changed from Original NGR	Surveyed in summer 2024
River Thames	Ses_Eco_4_S1	SU 49711 96369	SU 49652 96561	*	√
		SU 49686 96484	SU 49672 96481	√	✓
		SU 49662 96562	SU 49716 96327	√	√
	Ses_Eco_5_S1	SU 49777 94875	SU 49867 95104	√	√
		SU 49817 94980	SU 49796 94942	√	√
		SU 49777 94875	SU 49777 94875	×	×
	Ses_Eco_5_S2	SU 50269 94360	SU 50146 94424	✓	√
		SU 50243 94419	SU 50260 94409	✓	√
		SU 50107 94389	SU 50269 94360	√	√

Appendix 6.1 - Macroinvertebrate, invasive species and depressed river mussel baseline surveys (2024)

Classification - Public Page 7 of 53

Waterbody	Site ID	Active NGR	Original NGR	NGR changed from Original NGR	Surveyed in summer 2024
	Ses_Eco_5_S3	SU 54749 94684	SU 54667 94170	√	√
		SU 54681 94474	SU 54682 94478	✓	√
		SU 54669 94429	SU 54786 94700	✓	√

Classification - Public Page 8 of 53

3 Methodologies

3.1.1 Full details of these methods are included in a detailed specification for the surveys (Thames Water, 2024).

3.2 Invasive Non-Native Species

Survey

- 3.2.1 Surveys were completed by Ricardo Energy & Environment (REE) in April, May, July and August. For each location that was surveyed (see Table 2.1), the length of riverbank was defined and the three-part, semi-quantitative multi-habitat survey (MHS) were carried out (Sibley *et al.*, 2022) in spring, summer and autumn which comprised of:
 - A visual assessment for the presence of aquatic (floating and marginal) macrophytes, artificial structures or substrate (for subsequent sampling) and non-native fauna (e.g. colonies of molluscs or burrowing activity) aided by binoculars and/or bathyscope where necessary
 - Active macrophyte sampling using a series of grapnel throws (3x5) for each MHS
 - A targeted macroinvertebrate INNS sampling for three minutes from the bankside and/or shallow margins (where permitted) using a combination of sweeps, dredges, scrapes and manual searching. Sampling will actively target multiple habitats where available, including soft, coarse and artificial substrates and
 - The MHS method was supplemented by environmental DNA (eDNA) surveys which were sent for laboratory analysis.

Laboratory analysis

- 3.2.2 Macroinvertebrate sorting and identification followed standard laboratory methods. Following collection, the eDNA samples were also analysed in the laboratory. The following species groups were included as a minimum:
 - Freshwater Unionid mussels (Metabarcoding)
 - Freshwater Venerid mussels (excluding Unionid mussels) (Metabarcoding) and
 - Signal crayfish (Pacifastacus leniusculus) (qPCR).

Reporting

- 3.2.3 The specifications agreed with the Environment Agency requires that Excel data files including raw catch data and all calculations are provided. This should include, as a minimum:
 - Factual summaries of the INNS survey methods, data analysis, and baseline results per site and
 - Diversity and abundance of each species observed during visual observation. Diversity should be based on eDNA results. The data will inform the distribution of INNS and the risk of providing additional pathways and altering habitat suitability to favour them.

Appendix 6.1 - Macroinvertebrate, invasive species and depressed river mussel baseline surveys (2024)

Classification - Public Page 9 of 53

3.3 Macroinvertebrates

Survey

3.3.1 Surveys were completed by REE in April/May, August and October/November of 2024. Prior to collecting each macroinvertebrate sample at each of the locations listed in Table 2.2, a site walkover was completed to capture key environmental parameters (e.g., in-situ water quality, substrate composition) required to determine the expected diversity and abundancies of the biological elements. Macroinvertebrate samples were collected in spring, summer, and autumn in accordance with the EA's sampling methodology (Environment Agency, 2009). Samples were preserved in Industrial Methylated Spirit (IMS) 95% to allow preservation for laboratory processing.

Laboratory analysis

3.3.2 Laboratory analyses was commissioned by REE in line with the requirements of the EA Operational Instruction 024_08 (2014) by trained macroinvertebrate taxonomists in fully equipped laboratories. In accordance with EA Operational Instruction, the Quality Assurance (QA) procedure for laboratory analysis was quantified in terms of gains and losses in the number of taxa recorded by the primary analyst and the QA analyst. Laboratory analyses of macroinvertebrate samples was undertaken to mixed taxon level (TL5).

Reporting

- 3.3.3 The macroinvertebrate survey results were completed by REE. The specifications agreed with the Environment Agency requires that detailed Excel data files including raw data and all calculations should be provided in a format agreed with the Applicant. This includes, as a minimum:
 - Species data
 - Biological metric scores
 - All environmental variables collected and used to generate O:E scores for each location
- 3.3.4 Macroinvertebrate data was analysed to determine the following metrics:
 - Number of Scoring Taxa (NTaxa) is a count of the number of macroinvertebrate taxa that have a score in relation to a particular index.
 - Whalley, Hawkes, Paisley & Trigg (WHPT) and Average Score Per Taxon (ASPT)
 values (WFD-UKTAG, 2021) are scores that are derived based on the sensitivity of
 particular taxa.
 - Lotic-invertebrate Index for Flow Evaluation (LIFE) index (Chadd *et al.*, 1999) is a scoring system developed to assess the potential impacts of low flows / changes in flow regime based on the macroinvertebrate communities present.
 - Proportion of Sediment-sensitive Invertebrates (PSI) index (Chadd et al., 2013) uses
 the sensitivity of macroinvertebrate communities to fine sediment to determine the
 coverage of the streambed by fine sediments. Fine sediment deposition is often
 associated with lows flows, and sources of sediment can originate from agricultural or
 urban runoff, and

Appendix 6.1 - Macroinvertebrate, invasive species and depressed river mussel baseline surveys (2024)

Classification - Public Page 10 of 53

- Community Conservation Index (CCI) score (Chadd & Extence, 2004) is used to assess the conversation value of the macroinvertebrate populations present and identify any unusual or rare species.
- 3.3.5 For each sample, the River Invertebrate Classification Tool (RICT) (WFD-UKTAG, 2021) was used to contextualise the scores. RICT deploys the RIVPACS (River Invertebrate Prediction and Classification System) (Wright, 1997) model to predict site specific reference values, based on various physical parameters (as defined within) of the sample sites, including altitude, gradient, distance from source, discharge category, alkalinity, and substrates present against which the scores can be evaluated.
- 3.3.6 The model generates expected values for each metric so that observed/expected ratios can be derived (referred to as Environmental Quality Index (EQI)). For ASPT and NTAXA, the EQIs are then multiplied by a correcting factor to generate Environmental Quality Ratios (EQRs), which are then combined to be used for WFD classifications (High, Good, Moderate, Poor, Bad) (Table 3.1). The overall WFD status classification is determined by taking an average of the ASPT EQRs and NTAXA EQRs from both seasons and using the worst class indicated by the two indices. This output generated by RICT is called the Minimum of NTaxa and ASPT or MINTA (WFD-UKTAG, 2021).
- 3.3.7 For PSI and LIFE scores, which are not used for WFD classifications, the model only generates expected values for each sample, which can then be used to calculate EQIs. EQIs were then compared to threshold values, which are used for demonstrating impacts from low flows and / or fine sediments on macroinvertebrate communities. A threshold of 0.94 is used to indicate the presence of flow stressed macroinvertebrate communities (Extence *et al.*, 2017; Environment Agency, 2012). So therefore, a LIFE EQI score of less than 0.94 may indicate that flow is a possible pressure acting on an ecological community at a site. A threshold of 0.70 is used to indicate the presence of sediment stressed macroinvertebrate communities (Turley *et al.*, 2016). So therefore, a PSI EQI score of less than 0.70 may indicate that there is fine sediment pressure at a site.

Table 3.1 EQR's and WFD status thresholds for WHPT NTAXA and WHPT ASPT metrics.

Status boundary	WHPT NTAXA EQR	WHPT ASPT EQR
High / Good	0.80	0.97
Good / Moderate	0.68	0.86
Moderate / Poor	0.56	0.72
Poor / Bad	0.47	0.59

3.4 Depressed river mussel

Survey and analysis

3.4.1 Net search surveys were carried out in August 2024 at sites on the River Thames, three of which had three subsites and one of which had two subsites (Table 2.3) using a long-handled metal-framed kick net within marginal areas with compact muddy, or sandy sediment. Where ideal habitat was not visible to the eye, the net was be dragged at full

Appendix 6.1 - Macroinvertebrate, invasive species and depressed river mussel baseline surveys (2024)

Classification - Public Page 11 of 53

- extension and frequently checked for bivalves. Any shells or live bivalves were transferred to a bucket of water.
- 3.4.2 Where the water was shallow and clear enough, the substrate was also viewed by eye or with the aid of a bathyscope and bivalves picked by hand. Where rafts of empty bivalve shells occurred, they were also inspected for possible DRM.
- 3.4.3 On completion of the timed survey, the bivalves, live and shells, were sorted into piles of probable species which were then checked by an experienced taxonomist and numbers recorded.
- 3.4.4 At each sub-site notes were made of any INNS seen or features of interest and photographs taken of the habitat and catch. Where necessary, shells or photographs were taken for laboratory confirmation by an experienced taxonomist.

Reporting

- 3.4.5 The macroinvertebrate survey results were completed by REE. These data should be requested from Thames Water. The specifications agreed with the Environment Agency requires that detailed Excel data files including raw data and all calculations should be provided in a format agreed with the Applicant. This includes, as a minimum:
 - Species data, and
 - Factual summaries of the survey methods, data analysis, and baseline results per site.

Appendix 6.1 - Macroinvertebrate, invasive species and depressed river mussel baseline surveys (2024)

Classification - Public Page 12 of 53

4 Results

4.1.1 Environmental variables for each survey location on the River Thames and within the Ock catchment are shown below in Table 4.1

Table 4.1 Environmenal variables on the River Thames and Ock catchment.

Waterbody	Site ID	NGR	WFD waterbody ID	Altitude (mAOD)	Slope	Distance from source	Discharge category	Width (m)	Depth (cm)	Bedrock	Boulders/cobbles	Pebbles/gravel	Sand	Silt/clay	Conductivity
River Thames	Ses_Eco_ 4_S1	SU497099 6341	GB1060390 30334	50	0	115	8	53	224	0	0	60	20	20	559.08
	Ses_Eco_ 5_S1	SU497349 4879	GB1060390 30334	50	0	116	8	55	300	0	0	60	10	30	559.87
	Ses_Eco_ 5_S2	SU502839 4422	GB1060390 30334	50	0	117	8	92	250	0	0	50	30	20	563.12
	Ses_Eco_ 5_S3	SU547839 4746	GB1060390 30334	48	0	122	8	50	200	0	0	20	20	60	665.15
	Ses_Eco_ 6a_S2	SU655167 7460	GB1060390 30331	39	0	150	8	63	300	0	0	30	20	50	565.48
	Ses_Eco_ 6b_S1	SU782638 5124	GB1060390 23233	30	0	170	8	32	200	0	10	60	10	20	790
	Ses_Eco_ 6c_S1	SU904078 5496	GB1060390 23233	24	0	185	9	40	300	0	0	85	0	15	791.79
	Ses_Eco_ 6c_S2	SU985267 6822	GB1060390 23231	17	0	200	9	58	250	0	0	40	30	30	796.26

Waterbody	Site ID	NGR	WFD waterbody ID	Altitude (mAOD)	Slope	Distance from source	Discharge category	Width (m)	Depth (cm)	Bedrock	Boulders/cobbles	Pebbles/gravel	Sand	Silt/clay	Conductivity
	Ses_Eco_ 7_S1	SU992427 5500	GB1060390 23231	17	0	202	9	30	300	0	5	80	5	10	787.61
	Ses_Eco_ 8_S1	TQ011907 2359	GB1060390 23231	14	0	202	9	50	300	0	0	65	0	35	645.52
	Ses_Eco_ 9_S1	TQ049996 8345	GB1060390 23232	12	0	202	9	57	250	0	10	50	0	40	669.52
	Ses_Eco_ 10_S1	TQ079456 6341	GB1060390 23232	9	0	202	9	50	300	0	0	40	40	20	469.99
Ock catchment	Multi_Env_ 2	SU438119 0505	GB1060390 23360	64	1	1.7	1	1.4	15	0	0	30	0	70	970
	Multi_Env_ 3	SU429509 0448	GB1060390 23360	66	1	2.6	1	2	40	0	0	0.	0	100	990
	Multi_Env_ 4	SU426629 1579	GB1060390 23360	67	1	1	1	0.9	5	0	0	30	10	60	1048.3
	Multi_Env_ 5	SU436459 1485	GB1060390 23360	67	1	3	1	2.4	70	0	0	0	0	100	989.02
	Multi_Env_ 6	SU431199 1745	GB1060390 23360	63	1	4	1	1.4	15	0	0	15	0	85	854
	Multi_Env_ 7	SU435299 2389	GB1060390 23360	62	1	4	1	1.6	40			0	0	100	927
	Multi_Env_ 8	SU442319 3800	GB1060390 23360	59	1	5.5	1	2.2	40	0	0	20	0	80	837.14

Waterbody	Site ID	NGR	WFD waterbody ID	Altitude (mAOD)	Slope	Distance from source	Discharge category	Width (m)	Depth (cm)	Bedrock	Boulders/cobbles	Pebbles/gravel	Sand	Silt/clay	Conductivity
	Multi_Env_ 9	SU454749 3791	GB1060390 23360	61	1	0.5	1	2	30	0	0	10	0	90	635.49
	Multi_Env_ 14	SU452629 4543	GB1060390 23360	57	1	7	1	2.1	25	0	2	38	10	50	826.45
	Multi_Env_ 15	SU460659 4897	GB1060390 23360	56	1	5	1	2.1	90	0	0	0	0	100	520.24
	Multi_Env_ 16	SU469639 4641	GB1060390 23360	57	1	1	1	1.8	10	0	0	0	0	100	912.54
	Multi_Env_ 17	SU468059 5127	GB1060390 23360	54	1	1	1	1.5	25	0	0	0	0	100	957.18
	Multi_Env_ 23	SU466899 6903	GB1060390 23360	57	1	5.73	1	3	20	0	0	50	30	20	789.01

4.2 Invasive Non-Native Species

River Thames survey locations

- 4.2.1 A total of 29 INNS were recorded during targeted multi-habitat surveys and eDNA surveys across the 12 sites on the Thames in 2024 (Table 4.2). The most abundant species was the New Zealand mud snail *Potamopyrgus antipodarum*, with 2,828 individuals recorded across all surveys, and was recorded at every site. It was first introduced to the UK in 1852 and is now naturalised, widespread and common in many areas (Seddon *et al.*, 2014) and is considered to have a moderate impact (WFD UKTAG, 2015). Other prominent species included the Caspian mud shrimp *Chelicorophium curvispinum* (first introduced in 1930s and now widespread) (Sibley *et al.*, 2022) and demon shrimp *Dikerogammarus haemobaphes* which is considered a high-risk (Aldridge, 2013) and high impact (WFD UKTAG, 2015) species), which had 2,154 and 1,040 individuals recorded respectively, and were also both recorded at every site.
- 4.2.2 The only invasive macrophyte species recorded at every site was Nutall's waterweed *Elodea nuttallii*. Signal crayfish *Pacifastacus leniusculus* was detected via eDNA sampling at 7 of the River Thames Survey Locations. Both Nuttall's waterweed and signal crayfish are listed on Schedule 9 of the Wildlife & Countryside Act (1981) (as amended) and are considered a high-risk (Non-native Species Secretariat, 2011a; Non-native Species Secretariat, 2011b) and high impact (WFD UKTAG, 2015) species. The only invasive fish species to be recorded was Zander *Sander lucioperca*, which was detected via eDNA at 2 sites. It is considered to be a moderate-risk (Davies, 2021) and moderate impact (WFD UKTAG, 2015) species.
- 4.2.3 Twelve species were also recorded during the separate macroinvertebrate surveys at the twelve sites on the River Thames. This included 3,934 individual demon shrimp which were recorded at all sites. Other species present at all sites includes New Zealand mud snail, Ponto-Caspian mud shrimp *Chelicorophium robustum* (first recorded in the River Thames in 2021 (Sibley *et al.*, 2022)), Asian clam *Corbicula fluminea* (considered a high-risk (Zieritz, 2016) and high impact (WFD UKTAG, 2015) species), and the polychaete worm *Hypania invalida* (considered to be of unknown impact (WFD UKTAG, 2015)).

Table 4.2 INNS recorded on the River Thames in 2024.

Site	NGR	Date	Species	Count
SES_ECO_4	SU496129	09/04/2024	Hypania invalida	4
_S1	6587		Branchiura sowerbyi	1
			Corbicula fluminea	1
			Physella acuta/gyrina	28
			Potamopyrgus antipodarum	38
			Ferrissia wautieri	1
			Chelicorophium curvispinum	19
			Crangonyx pseudogracilis/floridanus sens. lat.	117

Appendix 6.1 - Macroinvertebrate, invasive species and depressed river mussel baseline surveys (2024)

Classification - Public Page 16 of 53

Site	NGR	Date	Species	Count
			Dikerogammarus haemobaphes	6
			Elodea nuttallii	Р
		31/07/2024	Hypania invalida	7
			Corbicula fluminea	10
			Dreissena polymorpha	S (1)
			Physella acuta/gyrina	24
			Potamopyrgus antipodarum	73
			Chelicorophium curvispinum	17
			Crangonyx pseudogracilis/floridanus sens. lat.	25
			Dikerogammarus haemobaphes	37
			Pacifastacus leniusculus	1
			Elodea nuttallii	Р
			Impatiens capensis	Р
			Impatiens glandulifera	Р
			Pacifastacus leniusculus	eDNA - Present
SES_ECO_5	SU497749	09/04/2024	Branchiura sowerbyi	1
_S1	4862		Corbicula fluminea	7
			Dreissena polymorpha	S (1)
			Dreissena sp. (juv)	2
			Physella acuta/gyrina	12
			Potamopyrgus antipodarum	105
			Chelicorophium curvispinum	27
			Crangonyx pseudogracilis/floridanus sens. lat.	45
			Dikerogammarus haemobaphes	11
			Elodea nuttallii	Р
		31/07/2024	Branchiura sowerbyi	1
			Corbicula fluminea	7
			Dreissena polymorpha	S (1)
			Dreissena sp. (juv)	2
			Physella acuta/gyrina	12
			Potamopyrgus antipodarum	105
			Chelicorophium curvispinum	27

Classification - Public Page 17 of 53

Site	NGR	Date	Species	Count
			Crangonyx pseudogracilis/floridanus sens. lat.	45
			Dikerogammarus haemobaphes	11
			Elodea nuttallii	Р
			Pacifastacus leniusculus	eDNA - Present
SES_ECO_5	SU501819	09/04/2024	Hypania invalida	8
_S2	4418		Corbicula fluminea	6
			Dreissena rostriformis bugensis	1
			Physella acuta/gyrina	9
			Potamopyrgus antipodarum	24
			Chelicorophium curvispinum	51
		Crangonyx pseudogracilis/floridanus sens. lat.	22	
			Dikerogammarus haemobaphes	12
			Elodea nuttallii	Р
	31/07/2024	Hypania invalida	12	
			Corbicula fluminea	8
			Dreissena polymorpha	2
			Physella acuta/gyrina	S (12)
			Potamopyrgus antipodarum	56
			Chelicorophium curvispinum	48
			Crangonyx pseudogracilis/floridanus sens. lat.	8
			Dikerogammarus haemobaphes	11
			Elodea nuttallii	Р
			Impatiens glandulifera	F
			Pacifastacus leniusculus	eDNA - Present
SES_ECO_5	SU547909	09/04/2024	Hypania invalida	1
S3	4721		Physella acuta/gyrina	2
			Potamopyrgus antipodarum	23
			Chelicorophium curvispinum	4
			Crangonyx pseudogracilis/floridanus sens. lat.	35
			Dikerogammarus haemobaphes	7

Classification - Public Page 18 of 53

Site	NGR	Date	Species	Count
		31/07/2024	Hypania invalida	2
			Corbicula fluminea	3
			Dreissena polymorpha	1
			Physella acuta/gyrina	S (5)
			Potamopyrgus antipodarum	21
			Chelicorophium curvispinum	4
			Crangonyx pseudogracilis/floridanus sens. lat.	13
			Dikerogammarus haemobaphes	16
			Hemimysis anomala	1
			Pacifastacus leniusculus	1
			Elodea nuttallii	F
			Pacifastacus leniusculus	eDNA - Present
SES_ECO_6	SU651937	09/04/2024	Hypania invalida	2
a_S2	a_S2 7426		Branchiura sowerbyi	1
			Dreissena polymorpha	S (2)
			Physella acuta/gyrina	S (7)
			Potamopyrgus antipodarum	43
			Chelicorophium curvispinum	18
			Crangonyx pseudogracilis/floridanus sens. lat.	3
			Dikerogammarus haemobaphes	7
			Elodea nuttallii	Р
		31/07/2024	Hypania invalida	3
			Corbicula fluminea	1
			Physella acuta/gyrina	2
			Potamopyrgus antipodarum	34
			Chelicorophium curvispinum	7
			Crangonyx pseudogracilis/floridanus sens. lat.	5
			Dikerogammarus haemobaphes	11
			Pacifastacus leniusculus	Ca
			Elodea nuttallii	А
			Elodea canadensis	Р

Classification - Public Page 19 of 53

Site	NGR	Date	Species	Count
			Pacifastacus leniusculus	eDNA - Present
SES_ECO_6	SU782198		Girardia (Dugesia) tigrina	1
o_S1	5126	09/04/2024	Hypania invalida	2
			Corbicula fluminea	1
			Dreissena rostriformis bugensis	1
			Dreissena polymorpha	S (1)
			Physella acuta/gyrina	S (8)
			Potamopyrgus antipodarum	17
			Chelicorophium curvispinum	64
		Crangonyx pseudogracilis/floridanus sens. lat.	7	
			Dikerogammarus haemobaphes	2
		Elodea nuttallii	Р	
		31/07/2024	Girardia (Dugesia) tigrina	1
			Hypania invalida	1
			Corbicula fluminea	S (1)
			Dreissena polymorpha	S (1)
			Physella acuta/gyrina	1
			Potamopyrgus antipodarum	4
			Chelicorophium curvispinum	320
			Chelicorophium robustrum	26
			Chelicorophium sp.	60
			Dikerogammarus haemobaphes	24
			Elodea nuttallii	Р
			Acorus calamus	Р
			Pacifastacus leniusculus	eDNA - Present
ES_ECO_6	SU903148	10/04/2024	Hypania invalida	2
_S1	5554		Branchiura sowerbyi	1
			Dreissena polymorpha	6
			Physella acuta/gyrina	S (1)
			Potamopyrgus antipodarum	14
			Chelicorophium curvispinum	45
			Dikerogammarus haemobaphes	6

Classification - Public Page 20 of 53

Site	NGR	Date	Species	Count
		31/07/2024	Hypania invalida	Т
			Dreissena polymorpha	5
			Physella acuta/gyrina	12
			Potamopyrgus antipodarum	690
			Chelicorophium curvispinum	325
			Crangonyx pseudogracilis/floridanus sens. lat.	21
			Dikerogammarus haemobaphes	27
			Elodea nuttallii	Р
			Pacifastacus Ieniusculus	eDNA - Present
SES_ECO_6	SU985207	10/04/2024	Dreissena polymorpha	S (1)
c_S2	6900		Physella acuta/gyrina	2
			Potamopyrgus antipodarum	49
			Chelicorophium curvispinum	36
			Chelicorophium robustrum	11
			Chelicorophium sp.	15
			Dikerogammarus haemobaphes	22
			Elodea nuttallii	Р
		01/08/2024	Corbicula fluminea	1
			Physella acuta/gyrina	1
			Potamopyrgus antipodarum	324
			Chelicorophium curvispinum	23
			Chelicorophium sp.	1
			Crangonyx pseudogracilis/floridanus sens. lat.	1
			Dikerogammarus haemobaphes	21
			Elodea nuttallii	Р
			Acorus calamus	Р
SES_ECO_7	SU992917	10/04/2024	Hypania invalida	3
_S1	5507		Corbicula fluminea	S (1)
			Physella acuta/gyrina	2
			Potamopyrgus antipodarum	26
			Chelicorophium curvispinum	7

Classification - Public Page 21 of 53

Site	NGR	Date	Species	Count
			Crangonyx pseudogracilis/floridanus sens. lat.	34
			Dikerogammarus haemobaphes	19
			Elodea nuttallii	Р
		01/08/2024	Hypania invalida	7
			Corbicula fluminea	1
			Dreissena rostriformis bugensis	1
			Physella acuta/gyrina	S (4)
			Potamopyrgus antipodarum	63
			Chelicorophium curvispinum	13
			Crangonyx pseudogracilis/floridanus sens. lat.	6
			Dikerogammarus haemobaphes	21
			Elodea nuttallii	Р
SES_ECO_8	TQ010777	10/04/2024	Hypania invalida	1
_S1	51 2380		Dreissena rostriformis bugensis	S (1)
			Dreissena polymorpha	1
			Potamopyrgus antipodarum	5
			Chelicorophium curvispinum	177
			Chelicorophium robustrum	3
			Chelicorophium sp.	7
			Crangonyx pseudogracilis/floridanus sens. lat.	1
			Dikerogammarus haemobaphes	104
		01/08/2024	Corbicula fluminea	6
			Dreissena polymorpha	1
			Physella acuta/gyrina	1
			Potamopyrgus antipodarum	24
			Chelicorophium curvispinum	390
			Chelicorophium robustrum	320
			Chelicorophium sp.	75
			Dikerogammarus haemobaphes	14
			Elodea nuttallii	Р
SES_ECO_9	TQ049996	10/04/2024	Hypania invalida	1
_S1	8345		Corbicula fluminea	2

Classification - Public Page 22 of 53

Site	NGR	Date	Species	Count
			Physella acuta/gyrina	4
			Potamopyrgus antipodarum	64
			Chelicorophium curvispinum	17
			Crangonyx pseudogracilis/floridanus sens. lat.	6
			Dikerogammarus haemobaphes	12
			Elodea nuttallii	Р
		01/08/2024	Hypania invalida	6
			Corbicula fluminea	8
			Dreissena polymorpha	S (2)
			Physella acuta/gyrina	1
			Potamopyrgus antipodarum	163
			Chelicorophium curvispinum	13
			Crangonyx pseudogracilis/floridanus sens. lat.	2
			Dikerogammarus haemobaphes	21
			Elodea nuttallii	Р
			Sander lucioperca	eDNA - Present
SES_ECO_1	TQ079036	10/04/2024	Hypania invalida	6
0_S1	6364		Branchiura sowerbyi	1
			Corbicula fluminea	5
			Physella acuta/gyrina	S (3)
			Potamopyrgus antipodarum	27
			Chelicorophium curvispinum	5
			Crangonyx pseudogracilis/floridanus sens. lat.	11
			Dikerogammarus haemobaphes	8
			Elodea nuttallii	Р
			Hydrocotyle ranunculoides	Р
		01/08/2024	Dendrocoelum romanodanubiale	1
			Hypania invalida	1
			Corbicula fluminea	10
			Dreissena polymorpha	S (1)
			Physella acuta/gyrina	7

Classification - Public Page 23 of 53

Site	NGR	Dat	е		Sp	pecies		Count
				Pota	amopyrgus a	ntipodarum		660
				Ferr	issia wautier	i		2
				Che	licorophium	curvispinum		17
				Che	licorophium	robustrum		9
				Che	licorophium	sp.		8
					ngonyx udogracilis/fl	oridanus sen	s. lat.	5
				Dike	rogammaru	s haemobapl	hes	28
				Eloc	lea nuttallii			Р
				Impa	atiens gland	ulifera		Р
				San	der lucioper	ca		eDNA - Present
Key								
S - Empty Shells T - Tubes Ca/C			Ca/CI -	CI - Carapace/Claw Remains				
Macrophyte at scale:	Macrophyte abundance scale:		O - Occasional		F - Frequent	A - Abundant	D - Do	minant

Ock catchment

- 4.2.4 A total of five INNS were recorded during targeted multi-habitat surveys and eDNA surveys across the sites on the Ock catchment in 2024 (Table 4.3). The most common species was the New Zealand mud snail, with 216 individuals recorded. It was first introduced to the UK in 1852 and is now naturalised, widespread and common in many areas (Seddon et al., 2014) and is considered to have a moderate impact. The most widespread recorded INNS was Crangonyx pseudogracilis/floridanus, which was found at 13 of the sites.

 Crangonyx pseudogracilis was first introduced to the UK in the 1930's and is now naturalised, widespread and common in many areas. Until recently it was the only non-native species of this genus known to be present in the UK. However, in 2017 a related non-native species Crangonyx floridanus was identified in the UK for the first time, but it may have been previously overlooked (Mauvisseau et al., 2019). The identification features available to distinguish the two species are slight and it is often not possible to identify individuals to species level using routine laboratory identification techniques. Given this, and consistent with good practice, records of Crangonyx are treated as an aggregate.
- 4.2.5 No INNS were detected via eDNA.
- 4.2.6 Four species were also recorded during the macroinvertebrate sampling across five sites in the Ock catchment. The most common species was the New Zealand mud snail, with 49 individuals recorded at two separate sites.

Classification - Public Page 24 of 53

Table 4.3 INNS recorded within the Ock catchment in 2024.

Site	NGR	Date	Species	Coun
Multi_Env_2	SU43800905	28/05/2024	Potamopyrgus antipodarum	S (6)
	13		Gammarus pulex/fossarum agg	6
		19/08/2024	Potamopyrgus antipodarum	S (4)
			Gammarus pulex/fossarum agg	34
Multi_Env_3	SU42945904	28/05/2024	Potamopyrgus antipodarum	2
	47		Gammarus fossarum	17
			Gammarus pulex/fossarum agg	2
Multi_Env_4	SU42716916 75	28/05/2024	Crangonyx pseudogracilis/floridanus sens. lat.	9
			Gammarus pulex/fossarum agg	35
Multi_Env_5	SU43646914	28/05/2024	Physella acuta/gyrina	3
	64		Crangonyx pseudogracilis/floridanus sens. lat.	2
			Gammarus pulex/fossarum agg	17
		19/08/2024	Physella acuta/gyrina	S (1)
			Gammarus pulex/fossarum agg	24
Multi_Env_6	SU43132918	28/05/2024	Potamopyrgus antipodarum	S (3)
	09		Gammarus fossarum	2
			Gammarus pulex/fossarum agg	7
		19/08/2024	Potamopyrgus antipodarum	S (5)
			Ferrissia wautieri	3
			Gammarus pulex/fossarum agg	40
Multi_Env_7	SU43522923	28/05/2024	Potamopyrgus antipodarum	S (2)
	25		Crangonyx pseudogracilis/floridanus sens. lat.	12
			Gammarus pulex/fossarum agg	14
Multi_Env_8	SU44284938 78	29/05/2024	Crangonyx pseudogracilis/floridanus sens. lat.	8
			Gammarus pulex/fossarum agg	2
Multi_Env_9	SU45490938	29/05/2024	Potamopyrgus antipodarum	9
	28		Crangonyx pseudogracilis/floridanus sens. lat.	19
			Gammarus pulex/fossarum agg	7
		20/08/2024	Potamopyrgus antipodarum	S (16

Classification - Public Page 25 of 53

Site	NGR	Date)			Count			
				Ferrissia v	vautieri			1	
					2				
Multi_Env_14	SU4526294 43	5 29/05/2	024	Crangony sens. lat.	x pseudograd	cilis/floridanus		26	
				Gammaru	ıs pulex/fossa	rum agg		29	
		20/08/2	024	Ferrissia v	vautieri			1	
				Gammaru	ıs pulex/fossa	rum agg		2	
Multi_Env_15	SU4610394 03	9 29/05/2	024	Crangony sens. lat.		63			
				Gammaru		1			
Multi_Env_16	SU4696294	8 28/05/2024		Potamopy		168			
	39				x pseudograd	cilis/floridanus		37	
				Gammaru	ıs pulex/fossa	rum agg		2	
Multi_Env_17	SU4677595 79	1 28/05/2024		Crangony sens. lat.	x pseudograd	cilis/floridanus		23	
				Gammaru	ıs pulex/fossa	rum agg		3	
		19/08/2	024	Ferrissia v	vautieri			69	
Multi_Env_23	SU4668996	9 19/08/2	024	Potamopy		37			
	03			Gammaru		130			
				Gammaru		28			
Key									
S - Empty Shell	S	T - Tubes	Ca/	CI - Carapa	ce/Claw Rem	nains			
Macrophyte ab scale:	undance	P - Present	O - Occ					D - Dominant	

Classification - Public Page 26 of 53

4.3 Macroinvertebrates

4.3.1 Plate 1 to Plate 8, below present the NTAXA EQRs, ASPT EQRs, PSI EQIs and LIFE EQIs respectively. Data for each site are discussed separately below and show in Table 4.4 and Table 4.5. Data for each site on the River Thames was provided by REE as averages from samples collected in 2023 and 2024 (Table 4.4, Table 4.5). These are indicative classifications based on the data presented. Only the EA can make formal classifications.

Table 4.4 Results of macroinvertebrate analysis from 2023/2024 River Thames surveys.

Site ID	Site NGR	Survey count	Survey Range	LIFE EQR Score Min - Max (AVG.)	LIFE (Family) Score Min - Max (AVG.)	PSI (Family) EQR Score Min - Max (AVG.)	PSI (Family) Score Min - Max (AVG.)	CCI EQR Score Min - Max (AVG.)	CCI Score Min - Max (AVG.)	WHPT ASPT EQR Score Min - Max (AVG.)	WHPT ASPT EQR Class Min - Max (AVG.) B/P/M/G/H	WHPT ASPT Score Min - Max (AVG.)	WHPT NTAXA EQR Score Min - Max (AVG.)	WHPT NTAXA EQR Class Min - Max (AVG.) B/P/M/G/H	WHPT NTAXA Score Min - Max (AVG.)
Ses_Eco_4_S1	SU4970996341	6	2024 to 2023	0.89 - 1 (0.95)	6.5 - 7.5 (7.02)	0.31 - 0.56 (0.41)	21.21 - 37.5 (28.07)	0.9 - 4.42 (2.46)	9.29 - 34 (19.81)	0.78 - 0.87 (0.82)	M - G (M)	4.98 - 5.53 (5.24)	0.46 - 1.25 (0.77)	B - H (G)	7 - 19 (14)
Ses_Eco_5_S1	SU4973494879	6	2024 to 2023	0.8 - 0.93 (0.88)	6 - 6.81 (6.53)	0.13 - 0.34 (0.24)	9.09 - 22.73 (16.16)	0.46 - 1.7 (1.19)	4.8 - 13 (10.02)	0.73 - 0.88 (0.79)	M - G (M)	4.62 - 5.51 (5.08)	0.07 - 1.13 (0.67)	B - H (M)	1 - 21 (12)
Ses_Eco_5_S2	SU5028394422	6	2024 to 2023	0.8 - 1.01 (0.92)	6 - 7.5 (6.82)	0.19 - 0.92 (0.66)	12.5 - 63.64 (45.17)	0.55 - 2.18 (1.28)	4.2 - 16.67 (11.1)	0.73 - 0.89 (0.81)	M - G (M)	4.46 - 6.14 (5.19)	0.33 - 0.66 (0.43)	B - M (B)	5 - 13 (8)
Ses_Eco_5_S3	SU5478394746	6	2024 to 2023	0.85 - 0.98 (0.92)	6.2 - 7.13 (6.82)	0.12 - 0.58 (0.3)	7.69 - 40 (20.38)	1 - 2.26 (1.41)	10 - 17.5 (12.02)	0.72 - 0.96 (0.82)	P - G (M)	4.88 - 5.66 (5.26)	0.39 - 0.76 (0.57)	B - G (M)	6 - 15 (10)
Ses_Eco_6a_S2	SU6551677460	6	2024 to 2023	0.88 - 0.98 (0.94)	6.57 - 7.22 (6.89)	0.13 - 0.74 (0.36)	8.7 - 50 (24.32)	0.82 - 2.11 (1.28)	6.5 - 16.8 (11.35)	0.78 - 0.88 (0.83)	M - G (M)	4.9 - 5.71 (5.3)	0.57 - 1.34 (0.83)	M - H (H)	9 - 21 (15)
Ses_Eco_6b_S1	SU7826385124	6	2024 to 2023	0.95 - 1.03 (0.98)	7 - 7.56 (7.24)	0.5 - 0.83 (0.59)	34.29 - 57.14 (40.12)	0.99 - 4.29 (2.24)	10.24 - 32.8 (18.26)	0.76 - 0.93 (0.83)	M - G (M)	5.11 - 5.48 (5.32)	0.64 - 1.25 (1.02)	M - H (H)	12 - 22 (18)
Ses_Eco_6c_S1	SU9040785496	6	2024 to 2023	0.92 - 1 (0.96)	6.9 - 7.36 (7.12)	0.35 - 0.69 (0.54)	24.32 - 47.92 (36.87)	1.31 - 3.26 (2.07)	10 - 33.71 (18.48)	0.83 - 0.92 (0.87)	M - G (G)	5.15 - 6.03 (5.57)	0.86 - 1.38 (1.19)	H - H (H)	16 - 26 (21)
Ses_Eco_6c_S2	SU9852676822	5	2024 to 2023	0.88 - 0.94 (0.92)	6.5 - 7.06 (6.82)	0.25 - 0.43 (0.34)	16.67 - 30 (23.07)	0.68 - 2.27 (1.42)	7 - 17.5 (11.86)	0.7 - 0.9 (0.8)	P - G (M)	4.79 - 5.32 (5.09)	0.76 - 1.31 (0.99)	G - H (H)	15 - 20 (17)
Ses_Eco_7_S1	SU9924275500	6	2024 to 2023	0.79 - 0.95 (0.89)	5.8 - 7.08 (6.62)	0.2 - 0.6 (0.46)	13.79 - 41.67 (31.5)	0.38 - 1.55 (1.03)	3.92 - 12.65 (8.74)	0.62 - 0.96 (0.79)	P - G (M)	4.24 - 5.68 (5.01)	0.21 - 1.07 (0.83)	B - H (H)	4 - 21 (15)

¹ MINTA values were not provided and therefore overall WFD classifications are not available. Likewise, the laboratory's overall QA score was not provided and therefore RICT analysis could not be accurately undertaken in order to get MINTA values.

Site ID	Site NGR	Survey count	Survey Range	LIFE EQR Score Min - Max (AVG.)	LIFE (Family) Score Min - Max (AVG.)	PSI (Family) EQR Score Min - Max (AVG.)	PSI (Family) Score Min - Max (AVG.)	CCI EQR Score Min - Max (AVG.)	CCI Score Min - Max (AVG.)	WHPT ASPT EQR Score Min - Max (AVG.)	WHPT ASPT EQR Class Min - Max (AVG.) B/P/M/G/H	WHPT ASPT Score Min - Max (AVG.)	WHPT NTAXA EQR Score Min - Max (AVG.)	WHPT NTAXA EQR Class Min - Max (AVG.) B/P/M/G/H	WHPT NTAXA Score Min - Max (AVG.)
Ses_Eco_8_S1	TQ0119072359	6	2024 to 2023	0.89 - 0.94 (0.92)	6.64 - 6.94 (6.78)	0.19 - 0.32 (0.27)	12.5 - 22.22 (18.19)	0.52 - 2.74 (1.67)	5.33 - 21 (13.64)	0.74 - 0.94 (0.83)	M - G (M)	5.07 - 5.51 (5.31)	0.56 - 1.02 (0.81)	M - H (H)	11 - 20 (14)
Ses_Eco_9_S1	TQ0499968345	6	2024 to 2023	0.86 - 0.95 (0.9)	6.29 - 7 (6.7)	0.21 - 0.37 (0.29)	13.89 - 25.71 (20.08)	0.39 - 4.56 (1.61)	4 - 34.91 (13.1)	0.69 - 0.86 (0.77)	P - M (M)	4.51 - 5.45 (4.91)	0.76 - 1.38 (1.01)	G - H (H)	13 - 21 (18)
Ses_Eco_10_S1	TQ0794566341	6	2024 to 2023	0.9 - 0.96 (0.93)	6.6 - 7 (6.75)	0.21 - 0.46 (0.36)	13.04 - 29.63 (22.79)	0.53 - 3.85 (1.42)	4.36 - 32 (13.09)	0.76 - 0.96 (0.85)	M - G (M)	4.79 - 6.05 (5.38)	0.39 - 1.03 (0.76)	B - H (G)	8 - 21 (15)

Table 4.5 Results of macroinvertebrate analysis from 2024 Ock catchment surveys.

Site ID	Site NGR	Survey count	Survey Range	LIFE EQR Score Min - Max (AVG.)	LIFE (Family) Score Min - Max (AVG.)	PSI (Family) EQR Score Min - Max (AVG.)	PSI (Family) Score Min - Max (AVG.)	CCI EQR Score Min - Max (AVG.)	CCI Score Min - Max (AVG.)	WHPT ASPT EQR Score Min - Max (AVG.)	WHPT ASPT EQR Class Min - Max (AVG.) B/P/M/G/H	WHPT ASPT Score Min - Max (AVG.)	WHPT NTAXA EQR Score Min - Max (AVG.)	WHPT NTAXA EQR Class Min - Max (AVG.) B/P/M/G/H	WHPT NTAXA Score Min - Max (AVG.)
Multi_Env_2	SU4381190505	3	2024	0.85 - 0.9 (0.87)	6.29 - 6.75 (6.46)	0.18 - 0.52 (0.3)	12.5 - 35.71 (20.51)	0.13 - 0.44 (0.23)	1 - 4.5 (2.17)	0.66 - 0.74 (0.69)	P - M (P)	4.34 - 4.53 (4.4)	0.46 - 0.66 (0.57)	B - M (M)	9 - 11 (10)
Multi_Env_3	SU4295090448	2	2024	0.77 - 0.85 (0.81)	5.6 - 6.25 (5.93)	0.19	12.5	0.12 - 0.37 (0.25)	1 - 3.86 (2.43)	0.55 - 0.6 (0.57)	B - P (B)	3.7 - 3.86 (3.78)	0.43 - 0.45 (0.44)	B - B (B)	9
Multi_Env_4	SU4266291579	2	2024	0.89 - 0.91 (0.9)	6.57 - 6.67 (6.62)	0.26 - 0.42 (0.34)	17.65 - 27.78 (22.71)	0.1 - 0.52 (0.31)	1 - 4 (2.5)	0.57 - 0.57 (0.57)	B - B (B)	3.75 - 3.9 (3.83)	0.43 - 0.46 (0.44)	B - B (B)	8 - 9 (9)
Multi_Env_5	SU4364591485	3	2024	0.88 - 0.91 (0.9)	6.4 - 6.63 (6.53)	0.22 - 0.3 (0.26)	13.33 - 18.18 (16.06)	0.11 - 0.35 (0.19)	1 - 3.75 (1.92)	0.55 - 0.61 (0.58)	B - P (B)	3.39 - 3.92 (3.6)	0.32 - 0.51 (0.44)	B - P (B)	7 - 11 (9)
Multi_Env_6	SU4311991745	3	2024	0.89 - 0.9 (0.9)	6.5 - 6.75 (6.64)	0.29 - 0.4 (0.33)	20 - 27.27 (22.42)	0.13 - 0.16 (0.14)	1 - 1.33 (1.19)	0.5 - 0.57 (0.53)	B - B (B)	3.35 - 3.46 (3.42)	0.32 - 0.39 (0.36)	B - B (B)	6 - 7 (6)

Site ID	Site NGR	Survey count	Survey Range	LIFE EQR Score Min - Max (AVG.)	LIFE (Family) Score Min - Max (AVG.)	PSI (Family) EQR Score Min - Max (AVG.)	PSI (Family) Score Min - Max (AVG.)	CCI EQR Score Min - Max (AVG.)	CCI Score Min - Max (AVG.)	WHPT ASPT EQR Score Min - Max (AVG.)	WHPT ASPT EQR Class Min - Max (AVG.) B/P/M/G/H	WHPT ASPT Score Min - Max (AVG.)	WHPT NTAXA EQR Score Min - Max (AVG.)	WHPT NTAXA EQR Class Min - Max (AVG.) B/P/M/G/H	WHPT NTAXA Score Min - Max (AVG.)
Multi_Env_7	SU4352992389	2	2024	0.85 - 0.85 (0.85)	6.2 - 6.25 (6.23)	0.17 - 0.22 (0.19)	11.11 - 14.29 (12.7)	0.12 - 0.42 (0.27)	1 - 4.33 (2.67)	0.53 - 0.53 (0.53)	B - B (B)	3.4 - 3.54 (3.47)	0.35 - 0.57 (0.46)	B - M (B)	7 - 12 (10)
Multi_Env_8	SU4423193800	2	2024	0.86 - 0.96 (0.91)	6.38 - 7 (6.69)	0.32 - 0.35 (0.34)	22.22 - 23.53 (22.88)	0.97 - 1.29 (1.13)	10	0.58 - 0.69 (0.63)	B - P (P)	4 - 4.48 (4.24)	0.46 - 0.48 (0.47)	B - P (B)	9
Multi_Env_9	SU4547493791	3	2024	0.84 - 0.9 (0.86)	6.15 - 6.63 (6.37)	0.12 - 0.46 (0.29)	7.69 - 31.25 (19.47)	0.14 - 0.53 (0.36)	1.11 - 4.29 (3.18)	0.55 - 0.62 (0.58)	B - P (B)	3.44 - 4.01 (3.73)	0.46 - 0.71 (0.62)	B - G (M)	9 - 13 (11)
Multi_Env_14	SU4526294543	3	2024	0.84 - 0.96 (0.89)	6.3 - 7 (6.58)	0.13 - 0.5 (0.28)	9.09 - 33.33 (19.14)	0.16 - 0.39 (0.31)	1.2 - 4 (2.73)	0.57 - 0.69 (0.62)	B - P (P)	3.36 - 4.5 (3.97)	0.56 - 0.85 (0.72)	M - H (G)	11 - 14 (13)
Multi_Env_15	SU4606594897	2	2024	0.75 - 0.81 (0.78)	5.29 - 5.78 (5.53)	0	0	0.11 - 0.41 (0.26)	1.14 - 4.5 (2.82)	0.6 - 0.6 (0.6)	P - P (P)	3.59 - 3.65 (3.62)	0.31 - 0.38 (0.35)	B - B (B)	8 - 10 (9)
Multi_Env_16	SU4696394641	2	2024	0.83 - 0.86 (0.84)	6.1 - 6.29 (6.19)	0.12 - 0.16 (0.14)	8 - 10.53 (9.26)	0.12 - 0.47 (0.29)	1 - 4.88 (2.94)	0.54 - 0.6 (0.57)	B - P (B)	3.49 - 4.1 (3.79)	0.48 - 0.51 (0.5)	P - P (P)	9 - 10 (10)
Multi_Env_17	SU4680595127	3	2024	0.8 - 0.84 (0.82)	5.86 - 6.3 (6.05)	0.08 - 0.14 (0.1)	5.56 - 9.09 (6.97)	0.12 - 1.54 (0.6)	1 - 16 (6.04)	0.48 - 0.56 (0.52)	B - B (B)	2.8 - 3.61 (3.34)	0.41 - 0.61 (0.49)	B - M (P)	8 - 10 (9)
Multi_Env_23	SU4668996903	2	2024	1.08 - 1.12 (1.1)	8.13 - 8.29 (8.21)	0.68 - 0.83 (0.75)	47.06 - 57.14 (52.1)	0.13 - 0.52 (0.33)	1 - 5.4 (3.2)	0.87 - 0.94 (0.9)	G - G (G)	5.1 - 6.44 (5.77)	0.41 - 0.72 (0.57)	B - G (M)	8 - 11 (10)



Plate 1 A graph showing WHPT-ASPT EQRs against WFD thresholds for the 2023/2024 River Thames Survey Locations.

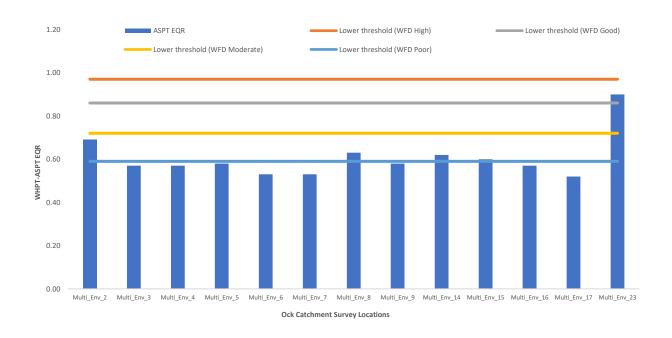


Plate 2 A graph showing WHPT-ASPT EQRs against WFD thresholds for the 2024 Ock catchment Survey Locations.

Classification - Public Page 30 of 53

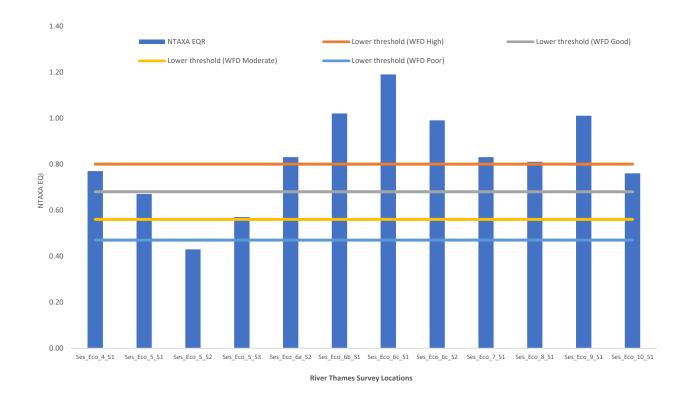


Plate 3 A graph showing WHPT-NTAXA EQRs against WFD thresholds for the 2023/2024 River Thames Survey Locations.

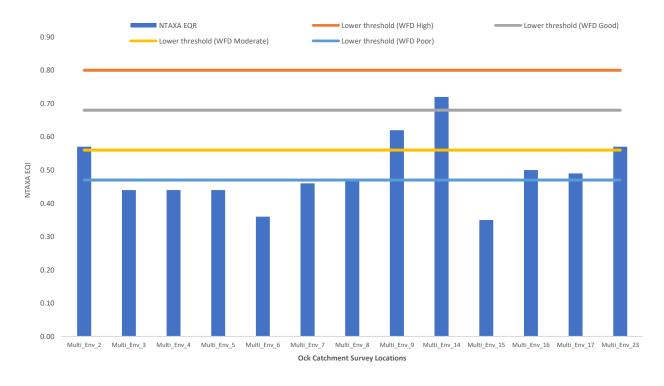


Plate 4 A graph showing WHPT-NTAXA EQRs against WFD thresholds for the 2024 Ock catchment survey locations.

Classification - Public Page 31 of 53

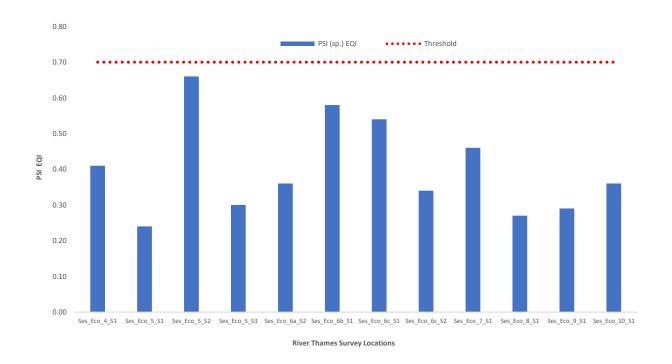


Plate 5 A graph showing PSI EQIs against its threshold for the 2023/2024 River Thames survey locations.

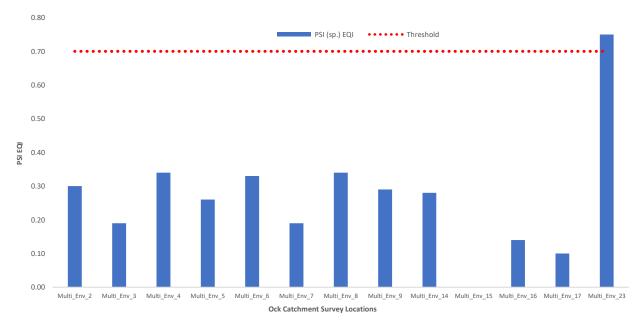


Plate 6 A graph showing PSI EQIs against its threshold for the 2024 Ock catchment survey locations.

Classification - Public Page 32 of 53

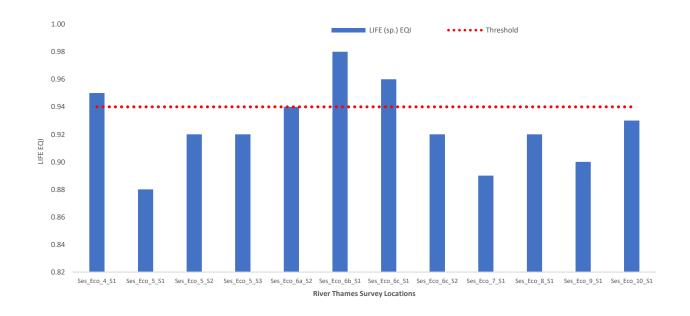


Plate 7 A graph showing LIFE EQIs against its threshold for the 2023/2024 River Thames survey locations.

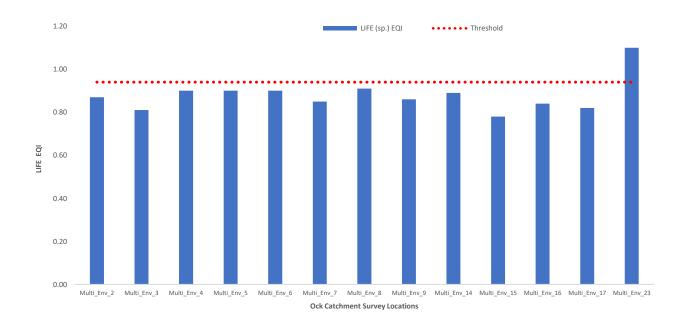


Plate 8 A graph showing LIFE EQIs against its threshold for the 2024 Ock catchment survey locations.

Classification - Public Page 33 of 53

River Thames

Ses_Eco_4_S1

- 4.3.2 The average NTaxa EQR for Ses_Eco_4_S1 in 2023/2024 was 0.77, which is classified as "Good" WFD class, suggesting that the number of taxa recorded at this site is as expected for a watercourse of its type. The ASPT EQR was 0.82, which is consistent with "Moderate" WFD class, which indicates that the macroinvertebrate community consists of some species tolerant to pollution, suggesting that there are some impacts from pollution at this survey location.
- 4.3.3 The LIFE EQI score (0.95) indicates that the watercourse is not impacted by low flows, however this is based on a single year data only and should be used in caution. The PSI EQI score (0.41) indicates that the watercourse is impacted by fine sedimentation.
- 4.3.4 The CCI score was 19.81, which is indicative of a watercourse of high conservation value (Table 4.4).

Ses_Eco_5_S1

- 4.3.5 The average NTaxa EQR for Ses_Eco_5_S1 in 2023/2024 was 0.67, which is classified as "Moderate" WFD class, suggesting that the number of taxa recorded at this site is below what would be expected for a watercourse of its type. The ASPT EQR was 0.79, which is consistent with "Moderate" WFD class, which indicates that the macroinvertebrate community consists of some species tolerant to pollution, suggesting that there are some impacts from pollution at this survey location.
- 4.3.6 The PSI and LIFE EQI scores (0.24 and 0.88 respectively) indicate that there is an impact from fine sedimentation and low flows on macroinvertebrate communities within the watercourse. However this is based on a single year data only and should be used in caution.
- 4.3.7 The CCI score was 10.02, which is indicative of a watercourse of fairly high conservation value (Table 4.4).

Ses_Eco_5_S2

- 4.3.8 The average NTaxa EQR for Ses_Eco_5_S2 in 2023/2024 was 0.43, which is classified as "Bad" WFD class, suggesting that the number of taxa recorded at this site is below what would be expected for a watercourse of its type. The ASPT EQR was 0.81, which is consistent with "Moderate" WFD class, which indicates that the macroinvertebrate community consists of some species tolerant to pollution, suggesting that there are some impacts from pollution at this survey location.
- 4.3.9 The PSI and LIFE EQI scores (0.66 and 0.92 respectively), indicate that there is an impact from fine sedimentation and low flows on macroinvertebrate communities within the watercourse. However this is based on a single year data only and should be used in caution.
- 4.3.10 The CCI score was 11.1, which is indicative of a watercourse of fairly high conservation value (Table 4.4).

Appendix 6.1 - Macroinvertebrate, invasive species and depressed river mussel baseline surveys (2024)

Classification - Public Page 34 of 53

Ses_Eco_5_S3

- 4.3.11 The average NTaxa EQR for Ses_Eco_5_S3 in 2023/2024 was 0.57, which is classified as "Moderate" WFD class, suggesting that the number of taxa recorded at this site is below what would be expected for a watercourse of its type. The ASPT EQR was 0.82, which is consistent with "Moderate" WFD class, which indicates that the macroinvertebrate community consists of some species tolerant to pollution, suggesting that there are some impacts from pollution at this survey location.
- 4.3.12 The PSI and LIFE EQI scores (0.3 and 0.92 respectively) indicate that there is an impact from fine sedimentation and low flows on macroinvertebrate communities within the watercourse. However, this is based on a single year data only and should be used in caution.
- 4.3.13 The CCI score was 12.02, which is indicative of a watercourse of fairly high conservation value (Table 4.4).

Ses_Eco_6a_S2

- 4.3.14 The average NTaxa EQR for Ses_Eco_6a_S2 in 2023/2024 was 0.83, which is classified as "High" WFD class, suggesting that the number of taxa recorded at this site is as expected for a watercourse of its type. The ASPT EQR was 0.83, which is consistent with "Moderate" WFD class, which indicates that the macroinvertebrate community consists of some species tolerant to pollution, suggesting that there are some impacts from pollution at this survey location.
- 4.3.15 The LIFE EQI score (0.94) indicates that the watercourse is not impacted by low flows, however this is based on a single year data only and should be used in caution. The PSI EQI score (0.36), indicates that the watercourse is impacted by fine sedimentation.
- 4.3.16 The CCI score was 11.35, which is indicative of a watercourse of fairly high conservation value (Table 4.4).

Ses_Eco_6b_S1

- 4.3.17 The average NTaxa EQR for Ses_Eco_6b_S1 in 2023/2024 was 1.02, which is classified as "High" WFD class, suggesting that the number of taxa recorded at this site is as expected for a watercourse of its type. The ASPT EQR was 0.83, which is consistent with "Moderate" WFD class, which indicates that the macroinvertebrate community consists of some species tolerant to pollution, suggesting that there are some impacts from pollution at this survey location.
- 4.3.18 The PSI and LIFE EQI scores (0.34 and 0.92 respectively) indicate that there is an impact from fine sedimentation and low flows on macroinvertebrate communities within the watercourse. However, this is based on a single year data only and should be used in caution.
- 4.3.19 The CCI score was 18.26, which is indicative of a watercourse of high conservation value (Table 4.4).

Appendix 6.1 - Macroinvertebrate, invasive species and depressed river mussel baseline surveys (2024)

Classification - Public Page 35 of 53

Ses_Eco_6c_S1

- 4.3.20 The average NTaxa EQR for Ses_Eco_6c_S1 in 2023/2024 was 1.19, which is classified as "High" WFD class, suggesting that the number of taxa recorded at this site is as expected for a watercourse of its type. The ASPT EQR was 0.87, which is consistent with "Good" WFD class, which indicates that the macroinvertebrate community consists of some species tolerant to pollution, suggesting that there is no impact from pollution at this survey location.
- 4.3.21 The LIFE EQI score (0.96), indicates that there is no impact from low flows on the watercourse. However, this is based on a single year data only and should be used in caution. The PSI EQI score (0.54) indicates that the watercourse is impacted by fine sedimentation.
- 4.3.22 The CCI score was 18.48, which is indicative of a watercourse of high conservation value (Table 4.4).

Ses_Eco_6c_S2

- 4.3.23 The average NTaxa EQR for Ses_Eco_6c_S2 in 2023/2024 was 0.99, which is classified as "High" WFD class, suggesting that the number of taxa recorded at this site is as expected for a watercourse of its type. The ASPT EQR was 0.80, which is consistent with "Moderate" WFD class, which indicates that the macroinvertebrate community consists of some species tolerant to pollution, which indicates that the macroinvertebrate community consists of some species tolerant to pollution, suggesting that there are some impacts from pollution at this survey location.
- 4.3.24 The LIFE EQI score (0.96) indicates that there is no impact from low flows on the watercourse. However, this is based on a single year data only and should be used in caution. The PSI EQI score (0.54) indicates that the watercourse is impacted by fine sedimentation.
- 4.3.25 The CCI score was 11.86, which is indicative of a watercourse of fairly high conservation value (Table 4.4).

Ses_Eco_7_S1

- 4.3.26 The average NTaxa EQR for Ses_Eco_7_S1 in 2023/2024 was 0.83, which is classified as "High" WFD class, suggesting that the number of taxa recorded at this site is as expected for a watercourse of its type. The ASPT EQR was 0.79, which is consistent with "Moderate" WFD class, which indicates that the macroinvertebrate community consists of some species tolerant to pollution, suggesting that there are some impacts from pollution at this survey location.
- 4.3.27 The PSI and LIFE EQI scores (0.46 and 0.89 respectively), indicate that there is an impact from fine sedimentation and low flows on macroinvertebrate communities within the watercourse. However, this is based on a single year data only and should be used in caution.
- 4.3.28 The CCI score was 8.74, which is indicative of a watercourse of moderate conservation value (Table 4.4).

Appendix 6.1 - Macroinvertebrate, invasive species and depressed river mussel baseline surveys (2024)

Classification - Public Page 36 of 53

Ses_Eco_8_S1

- 4.3.29 The average NTaxa EQR for Ses_Eco_8_S1 in 2023/2024 was 0.81, which is classified as "High" WFD class, suggesting that the number of taxa recorded at this site is as expected for a watercourse of its type. The ASPT EQR was 0.83, which is consistent with "Moderate" WFD class, which indicates that the macroinvertebrate community consists of some species tolerant to pollution, suggesting that there are some impacts from pollution at this survey location.
- 4.3.30 The PSI and LIFE EQI scores (0.27 and 0.92 respectively) indicate that there is an impact from fine sedimentation and low flows on macroinvertebrate communities within the watercourse. However, this is based on a single year data only and should be used in caution.
- 4.3.31 The CCI score was 13.64, which is indicative of a watercourse of fairly high conservation value (Table 4.4).

Ses_Eco_9_S1

- 4.3.32 The average NTaxa EQR for Ses_Eco_9_S1 in 2023/2024 was 1.01, which is classified as "High" WFD class, suggesting that the number of taxa recorded at this site is as expected for a watercourse of its type. The ASPT EQR was 0.77, which is consistent with "Moderate" WFD class, which indicates that the macroinvertebrate community consists of some species tolerant to pollution, suggesting that there are some impacts from pollution at this survey location.
- 4.3.33 The PSI and LIFE EQI scores (0.29 and 0.90 respectively) indicate that there is an impact from fine sedimentation and low flows on macroinvertebrate communities within the watercourse. However, this is based on a single year data only and should be used in caution.
- 4.3.34 The CCI score was 13.10, which is indicative of a watercourse of fairly high conservation value (Table 4.4).

Ses_Eco_10_S1

- 4.3.35 The average NTaxa EQR for Ses_Eco_10_S1 in 2023/2024 was 0.76, which is classified as "Good" WFD class, suggesting that the number of taxa recorded at this site is as expected for a watercourse of its type. The ASPT EQR was 0.85, which is consistent with "Moderate" WFD class, which indicates that the macroinvertebrate community consists of some species tolerant to pollution, suggesting that there are some impacts from pollution at this survey location.
- 4.3.36 The PSI and LIFE EQI scores (0.36 and 0.93 respectively) indicate that there is an impact from fine sedimentation and low flows on macroinvertebrate communities within the watercourse. However, this is based on a single year data only and should be used in caution.
- 4.3.37 The CCI score was 13.09, which is indicative of a watercourse of fairly high conservation value (Table 4.4).

Appendix 6.1 - Macroinvertebrate, invasive species and depressed river mussel baseline surveys (2024)

Classification - Public Page 37 of 53

Ock catchment

Multi_Env_2

- 4.3.38 The average NTaxa EQR for Multi_Env_2 in 2024 was 0.57, which is classified as "Moderate" WFD class, suggesting that the number of taxa recorded at this site is below what would be expected for a watercourse of its type. The ASPT EQR was 0.69, which is consistent with "Poor" WFD class, suggesting that there are impacts from pollution at this survey location.
- 4.3.39 The PSI and LIFE EQI scores (0.30 and 0.87 respectively) indicate that there is an impact from fine sedimentation and low flows on macroinvertebrate communities within the watercourse. However, this is based on a single year data only and should be used in caution.
- 4.3.40 The CCI score was 2.17, which is indicative of a watercourse of low conservation value (Table 4.5).

Multi_Env_3

- 4.3.41 The average NTaxa EQR for Multi_Env_3 in 2024 was 0.44, which is classified as "Bad" WFD class, suggesting that the number of taxa recorded at this site is below what would be expected for a watercourse of its type. The ASPT EQR was 0.57, which is consistent with "Bad" WFD class, suggesting that there are impacts from pollution at this survey location.
- 4.3.42 The PSI and LIFE EQI scores (0.19 and 0.81 respectively) indicate that there is an impact from fine sedimentation and low flows on macroinvertebrate communities within the watercourse. However, this is based on a single year data only and should be used in caution.
- 4.3.43 The CCI score was 2.43, which is indicative of a watercourse of low conservation value (Table 4.5).

Multi_Env_4

- 4.3.44 The average NTaxa EQR for Multi_Env_4 in 2024 was 0.44, which is classified as "Bad" WFD class, suggesting that the number of taxa recorded at this site is below what would be expected for a watercourse of its type. The ASPT EQR was 0.57, which is consistent with "Bad" WFD class, suggesting that there are impacts from pollution at this survey location.
- 4.3.45 The PSI and LIFE EQI scores (0.34 and 0.90 respectively) indicate that there is an impact from fine sedimentation and low flows on macroinvertebrate communities within the watercourse. However, this is based on a single year data only and should be used in caution.
- 4.3.46 The CCI score was 2.50, which is indicative of a watercourse of low conservation value (Table 4.5).

Multi Env 5

4.3.47 The average NTaxa EQR for Multi_Env_5 in 2024 was 0.44, which is classified as "Bad" WFD class, suggesting that the number of taxa recorded at this site is below what would be

Appendix 6.1 - Macroinvertebrate, invasive species and depressed river mussel baseline surveys (2024)

Classification - Public Page 38 of 53

- expected for a watercourse of its type. The ASPT EQR was 0.58, which is consistent with "Bad" WFD class, suggesting that there are impacts from pollution at this survey location.
- 4.3.48 The PSI and LIFE EQI scores (0.26 and 0.90 respectively) indicate that there is an impact from fine sedimentation and low flows on macroinvertebrate communities within the watercourse. However, this is based on a single year data only and should be used in caution.
- 4.3.49 The CCI score was 1.92, which is indicative of a watercourse of low conservation value (Table 4.5).

Multi_Env_6

- 4.3.50 The average NTaxa EQR for Multi_Env_6 in 2024 was 0.36, which is classified as "Bad" WFD class, suggesting that the number of taxa recorded at this site is below what would be expected for a watercourse of its type. The ASPT EQR was 0.53, which is consistent with "Bad" WFD class, suggesting that there are impacts from pollution at this survey location.
- 4.3.51 The PSI and LIFE EQI scores (0.33 and 0.90 respectively) indicate that there is an impact from fine sedimentation and low flows on macroinvertebrate communities within the watercourse. However, this is based on a single year data only and should be used in caution.
- 4.3.52 The CCI score was 1.19, which is indicative of a watercourse of low conservation value (Table 4.5).

Multi_Env_7

- 4.3.53 The average NTaxa EQR for Multi_Env_7 in 2024 was 0.46, which is classified as "Bad" WFD class, suggesting that the number of taxa recorded at this site is below what would be expected for a watercourse of its type. The ASPT EQR was 0.53, which is consistent with "Bad" WFD class, suggesting that there are impacts from pollution at this survey location.
- 4.3.54 The PSI and LIFE EQI scores (0.19 and 0.85 respectively) indicate that there is an impact from fine sedimentation and low flows on macroinvertebrate communities within the watercourse. However, this is based on a single year data only and should be used in caution.
- 4.3.55 The CCI score was 2.67, which is indicative of a watercourse of low conservation value (Table 4.5).

Multi_Env_8

- 4.3.56 The average NTaxa EQR for Multi_Env_8 in 2024 was 0.47, which is classified as "Bad" WFD class, suggesting that the number of taxa recorded at this site is below what would be expected for a watercourse of its type. The ASPT EQR was 0.63, which is consistent with "Poor" WFD class, suggesting that there are impacts from pollution at this survey location.
- 4.3.57 The PSI and LIFE EQI scores (0.34 and 0.91 respectively) indicate that there is an impact from fine sedimentation and low flows on macroinvertebrate communities within the watercourse. However, this is based on a single year data only and should be used in caution.

Appendix 6.1 - Macroinvertebrate, invasive species and depressed river mussel baseline surveys (2024)

Classification - Public Page 39 of 53

4.3.58 The CCI score was 10.00, which is indicative of a watercourse of moderate conservation value (Table 4.5).

Multi Env 9

- 4.3.59 The average NTaxa EQR for Multi_Env_9 in 2024 was 0.62, which is classified as "Moderate" WFD class, suggesting that the number of taxa recorded at this site is below what would be expected for a watercourse of its type. The ASPT EQR was 0.58, which is consistent with "Bad" WFD class, suggesting that there are impacts from pollution at this survey location.
- 4.3.60 The PSI and LIFE EQI scores (0.29 and 0.86 respectively) indicate that there is an impact from fine sedimentation and low flows on macroinvertebrate communities within the watercourse. However, this is based on a single year data only and should be used in caution.
- 4.3.61 The CCI score was 3,18, which is indicative of a watercourse of low conservation value (Table 4.5).

Multi_Env_14

- 4.3.62 The average NTaxa EQR for Multi_Env_14 in 2024 was 0.72, which is classified as "Good" WFD class, suggesting that the number of taxa recorded at this site is as expected for a watercourse of its type. The ASPT EQR was 0.62, which is consistent with "Poor" WFD class, suggesting that there are impacts from pollution at this survey location.
- 4.3.63 The PSI and LIFE EQI scores (0.28 and 0.89 respectively) indicate that there is an impact from fine sedimentation and low flows on macroinvertebrate communities within the watercourse. However, this is based on a single year data only and should be used in caution.
- 4.3.64 The CCI score was 2.73, which is indicative of a watercourse of low conservation value (Table 4.5).

Multi_Env_15

- 4.3.65 The average NTaxa EQR for Multi_Env_15 in 2024 was 0.35, which is classified as "Bad" WFD class, suggesting that the number of taxa recorded at this site is below what would be expected for a watercourse of its type. The ASPT EQR was 0.60, which is consistent with "Poor" WFD class, suggesting that there are impacts from pollution at this survey location.
- 4.3.66 The PSI and LIFE EQI scores (0 and 0.78 respectively) indicate that there is an impact from fine sedimentation and low flows on macroinvertebrate communities within the watercourse. However, this is based on a single year data only and should be used in caution.
- 4.3.67 The CCI score was 2.82, which is indicative of a watercourse of low conservation value (Table 4.5).

Multi_Env_16

4.3.68 The average NTaxa EQR for Multi_Env_16 in 2024 was 0.50, which is classified as "Poor" WFD class, suggesting that the number of taxa recorded at this site is below what would be

Appendix 6.1 - Macroinvertebrate, invasive species and depressed river mussel baseline surveys (2024)

Classification - Public Page 40 of 53

- expected for a watercourse of its type. The ASPT EQR was 0.57, which is consistent with "Bad" WFD class, suggesting that there are impacts from pollution at this survey location.
- 4.3.69 The PSI and LIFE EQI scores (0.14 and 0.84 respectively) indicate that there is an impact from fine sedimentation and low flows on macroinvertebrate communities within the watercourse. However, this is based on a single year data only and should be used in caution.
- 4.3.70 The CCI score was 2.94, which is indicative of a watercourse of low conservation value (Table 4.5).

Multi_Env_17

- 4.3.71 The average NTaxa EQR for Multi_Env_17 in 2024 was 0.49, which is classified as "Poor" WFD class, suggesting that the number of taxa recorded at this site is below what would be expected for a watercourse of its type. The ASPT EQR was 0.52, which is consistent with "Bad" WFD class, suggesting that there are impacts from pollution at this survey location.
- 4.3.72 The PSI and LIFE EQI scores (0.10 and 0.82 respectively) indicate that there is an impact from fine sedimentation and low flows on macroinvertebrate communities within the watercourse. However, this is based on a single year data only and should be used in caution.
- 4.3.73 The CCI score was 6.04, which is indicative of a watercourse of moderate conservation value (Table 4.5).

Multi_Env_23

- 4.3.74 The average NTaxa EQR for Multi_Env_23 in 2024 was 0.57, which is classified as "Moderate" WFD class, suggesting that the number of taxa recorded at this site is below what would be expected for a watercourse of its type. The ASPT EQR was 0.90, which is consistent with "Good" WFD class, suggesting that there are no impacts from pollution at this survey location.
- 4.3.75 The PSI and LIFE EQI scores (0.75 and 1.10 respectively) indicate that there is an impact from fine sedimentation and low flows on macroinvertebrate communities within the watercourse. However, this is based on a single year data only and should be used in caution.
- 4.3.76 The CCI score was 3.20, which is indicative of a watercourse of low conservation value (Table 4.5).

Notable macroinvertebrate species

- 4.3.77 There were no notable macroinvertebrate species recorded in 2024 within the Ock catchment survey locations.
- 4.3.78 Fourteen notable macroinvertebrate species were recorded within the River Thames Survey Locations in 2024 and fifteen in 2023 (Table 4.6), ranging from a CCI score of 5 (Local) to a CCI score of 9 (RDB2 Vulnerable).

Appendix 6.1 - Macroinvertebrate, invasive species and depressed river mussel baseline surveys (2024)

Classification - Public Page 41 of 53

Table 4.6 A table showing the notable macroinvertebrate species recorded at the 2024 River Thames survey locations.

Common Name	Species	CCI Score	CCI Classification	Designat	ions	Sites	Dates
Mud Snail	Lymnaea glabra	9	RDB2 (Vulnerable)	N/A	N/A	Ses_Eco_6C_S1	29/10/2024
Striped Mayfly	Ephemera lineata	8	RDB3 (Rare)	NS- includes*	N/A	Ses_Eco_4_S1	10/04/2024
						Ses_Eco_5_S3	27/04/2023
						Ses_Eco_4_S1	12/07/2023
						Ses_Eco_6b_S1	20/06/2023
						Ses_Eco_9_S1	14/07/2023
						Ses_Eco_10_S1	14/07/2023
Common Clubtail	Gomphus vulgatissimus	8	RDB3 (Rare)	N/A	N/A	Ses_Eco_4_S1	10/04/2024
Dragonfly						Ses_Eco_5_S2	13/05/2024
Caddifly (Leptoceridar)	Oecetis notata	8	RDB3 (Rare)	N/A	N/A	Ses_Eco_6B_S1	15/08/2024
Depressed River Mussel	Pseudanodonta complanata	7	Notable (but not RDB status)	S41 NERC#	NS-	Ses_Eco_6A_S2	10/04/2024
					includ es*	Ses_Eco_6C_S1	14/05/2024
						Ses_Eco_6C_S2	15/05/2024
						Ses_Eco_8_S1	15/05/2024
						Ses_Eco_6c_S1	21/06/2023
						Ses_Eco_8_S1	21/06/2023
Caddisfly (Leptoceridae)	Ceraclea senilis	7	Notable (but not RDB status)	Notable¥	N/A	Ses_Eco_9_S1	14/07/2023
Riffle Beetle	Riolus subviolaceus	6	Regionally Notable	NS- excludes ⁺		Ses_Eco_6b_S1	20/06/2023
Caddisfly (Goeridae)	Silo nigricornis	5	Local	N/A	N/A	Ses_Eco_4_S1	10/04/2024
						Ses_Eco_4_S1 Ses_Eco_6b_S1 Ses_Eco_9_S1 Ses_Eco_10_S1 Ses_Eco_4_S1 Ses_Eco_5_S2 Ses_Eco_6B_S1 Ses_Eco_6A_S2 Ses_Eco_6C_S1 Ses_Eco_6C_S1 Ses_Eco_6c_S1 Ses_Eco_6c_S1 Ses_Eco_9_S1 Ses_Eco_9_S1 Ses_Eco_6b_S1	10/04/2024

Common Name	Species	CCI Score	CCI Classification	Designations		Sites	Dates
						Ses_Eco_4_S1	12/08/2024
						Ses_Eco_10_S1	13/08/2024
						Ses_Eco_6A_S2	30/10/2024
						Ses_Eco_6C_S1	29/10/2024
						Ses_Eco_9_S1	31/10/2024
						Ses_Eco_10_S1	28/10/2024
						Ses_Eco_4_S1	11/11/2024
						Ses_Eco_5_S3	11/11/2024
						Ses_Eco_7_S1	12/11/2024
True Bug	Aphelocheirus aestivalis	5	Local	N/A	N/A	Ses_Eco_6C_S1	14/05/2024
						Ses_Eco_6C_S1	29/10/2024
						Ses_Eco_10_S1	24/04/2023
						Ses_Eco_6c_S1	06/11/2023
						Ses_Eco_6c_S1	06/11/2023
Long Fingernail Clam	Musculium transversum	n transversum 5 Local N/A N	N/A	Ses_Eco_6C_S1	15/05/2024		
						Ses_Eco_8_S1	15/05/2024
						Ses_Eco_6A_S2	30/10/2024
						Ses_Eco_6C_S2	12/11/2024
						Ses_Eco_5_S1	11/11/2024
						Ses_Eco_4_S1	12/07/2023
						Ses_Eco_5_S2	11/07/2023
						Ses_Eco_6b_S1	01/11/2023

Common Name	Species	CCI Score	CCI Classification	Designations		Sites	Dates
						Ses_Eco_5_S2	11/07/2023
Caddisfly (Phrygaeniadae)	Phryganea grandis	5	Local	N/A	N/A	Ses_Eco_6B_S1	30/10/2024
						Ses_Eco_6b_S1	20/06/2023
Swollen River Mussel	Unio tumidus	5	Local	NS-		Ses_Eco_5_S1	10/04/2024
				includes*		Ses_Eco_6C_S2	15/05/2024
						Ses_Eco_6C_S2	15/08/2024
						Ses_Eco_5_S1	11/11/2024
						Ses_Eco_6a_S2	20/06/2023
Caddisfly	Brachycentrus subnubilus	5	Local	N/A	N/A	Ses_Eco_6B_S1	14/05/2024
(Brachycentridae)						Ses_Eco_7_S1	15/05/2024
						Ses_Eco_8_S1	15/05/2024
						Ses_Eco_6B_S1	15/08/2024
						Ses_Eco_6C_S1	15/08/2024
						Ses_Eco_6C_S2	15/08/2024
						Ses_Eco_7_S1	15/08/2024
						Ses_Eco_8_S1	16/08/2024
						Ses_Eco_6B_S1	30/10/2024
						Ses_Eco_6C_S1	29/10/2024
						Ses_Eco_9_S1	31/10/2024
						Ses_Eco_10_S1	28/10/2024
						Ses_Eco_5_S3	11/11/2024
						Ses_Eco_6c_S1	21/06/2023

Common Name	Species	CCI Score	CCI Classification	Designations		Sites	Dates
						Ses_Eco_6c_S2	18/08/2023
						Ses_Eco_8_S1	21/06/2023
						Ses_Eco_10_S1	14/07/2023
						Ses_Eco_6a_S2	01/11/2023
						Ses_Eco_6b_S1	01/11/2023
						Ses_Eco_6c_S1	06/11/2023
						Ses_Eco_6c_S1	06/11/2023
Giant Lacewing	Osmylus fulvicephalus	5	Local	N/A	N/A	Ses_Eco_10_S1	13/08/2024
						Ses_Eco_10_S1	14/07/2023
Caddisfly (Psychomyiidae)	Tinodes assimilis	5	Local	N/A	N/A	Ses_Eco_7_S1	12/11/2024
Caddisfly (Goeridae)	Silo nigricornis	5	Local	N/A	N/A	Ses_Eco_6c_S1	26/04/2023
						Ses_Eco_4_S1	12/07/2023
						Ses_Eco_6a_S2	20/06/2023
						Ses_Eco_4_S1	31/10/2023
						Ses_Eco_5_S2	31/10/2023
						Ses_Eco_5_S3	31/10/2023
						Ses_Eco_6b_S1	01/11/2023
						Ses_Eco_6c_S1	06/11/2023
						Ses_Eco_6c_S1	06/11/2023
Caddisfly (Leptoceridae)	Athripsodes bilineatus	5	Local	N/A	N/A	Ses_Eco_8_S1	21/06/2023
Beautiful Demoiselle Damselfly	Calopteryx virgo	5	Local	N/A	N/A	Ses_Eco_5_S1	31/10/2023

Common Name	Species	CCI Score	CCI Classification	Designations		Sites	Dates
Humpbacked Peaclam	Pisidium supinum	5	Local	N/A	N/A	Ses_Eco_6c_S2	29/09/2023
Delta prawn	Palaemon longirostris	5	Local	N/A	N/A	Ses_Eco_5_S3	11/07/2023
River orb mussel	Sphaerium rivicola	N/A	(Frequent)	NS-	N/A	Ses_Eco_6C_S2	12/11/2024
		(3)		includes*		Ses_Eco_9_S1	31/10/2024

^{*}NS-includes: species that are nationally scarce. Includes Red Listed Data.

[#]S41 NERC: species of principal importance protected under Section 41 of the Natural Environment and Rural Communities (NERC) Act 2006².

^{*}Notable: species that are nationally notable.

⁺ NS-excludes: species that are nationally scarce. Excludes Red Listed Data.

² Section 41 of the Natural Environment and Rural Communities (NERC) Act 2006. Available from: https://www.legislation.gov.uk/ukpga/2006/16/section/41. Accessed on 8th June 2025.

4.4 Depressed river mussel

- 4.4.1 Seven taxa were found during the river mussel surveys within the River Thames in 2024, the most abundant of which being the INNS, the Asian clam, which was recorded at every survey location (Table 4.7).
- 4.4.2 One shell of the depressed river mussel *Pseudanodonta complanata* was recorded at one survey location SES_ECO_4_S1.
- 4.4.3 Another INNS, the zebra mussel *Dreissena polymorpha*, was recorded at all sites, apart from SES ECO 5 S3.
- 4.4.4 Other species recorded included the duck mussel *Anodonta anatine*, pea mussel *Sphaerium* sp., painter's mussel *Unio pictorum* and swollen river mussel *Unio tumidus*.

Table 4.7 Mussel species recorded on the River Thames in 2024

Site	Date	Species	Live Total	Shell Total	Overall total
SES_ECO_4_S1	21/08/2024	Anodonta anatina	2	27	29
		Corbicula fluminea	300	55	355
		Dreissena polymorpha	0	1	1
		Pseudanodonta complanata	0	1	1
		Sphaerium sp.	2	6	8
		Unio pictorum	4	0	4
		Unio tumidus	53	29	82
SES_ECO_5_S1	21/08/2024	Anodonta anatina	0	3	3
		Corbicula fluminea	260	125	385
		Dreissena polymorpha	6	14	20
		Sphaerium sp.	3	7	10
		Unio pictorum	9	19	28
		Unio tumidus	58	118	176
SES_ECO_5_S2	21/08/2024	Anodonta anatina	0	43	43
		Corbicula fluminea	119	40	159
		Dreissena polymorpha	13	15	28
		Sphaerium sp.	2	7	9
		Unio pictorum	12	3	15
		Unio tumidus	24	74	98
SES_ECO_5_S3	22/08/2024	Anodonta anatina	0	2	2
		Corbicula fluminea	23	9	32
		Sphaerium sp.	1	5	6
		Unio pictorum	7	0	7

Appendix 6.1 - Macroinvertebrate, invasive species and depressed river mussel baseline surveys (2024)

Classification - Public Page 47 of 53

Site	Date	Species	Live Total	Shell Total	Overall total
		Unio tumidus	36	7	43
SES_ECO_5_S4	22/08/2024	Anodonta anatina	2	0	2
		Corbicula fluminea	60	25	85
		Dreissena polymorpha	1	0	1
		Sphaerium sp.	2	2	4
		Unio pictorum	4	1	5
		Unio tumidus	45	10	55

Classification - Public Page 48 of 53

References

Aldridge, D.C. (2013). GB Non-native Organism Rapid Risk Assessment for Dikerogammarus haemobaphes (Eichwald, 1841). Accessed June 2025. www.nonnativespecies.org.

Atkins (2022). SESRO Gate 2 Environmental Assessment Report (EAR).

Chadd, R., England, J., Dunbar, M.J., Wood, P.J. & Taylor, E.D. (2013). The assessment of fine sediment accumulation in rivers using macro-invertebrate community response. River research and applications, 29: pp. 17-55.

Chadd, R. & Extence, C. (2004). The conservation of freshwater macroinvertebrate populations: a community-based classification scheme. Aquatic Conservation: Marine and Freshwater Ecosystems 14: pp. 597-624.

Chadd, R., Balbi, B.M. & Extence, C. (1999). River flow indexing using British benthic macroinvertebrates: a framework for setting hydroecological objectives. Regulated rivers: research and management, 15: pp. 543-574.

Davies, G.D. (2021). GB Non-native Organism Rapid Risk Assessment for Zander (*Sander lucioperca*). Accessed July 2025. www.nonnativespecies.org.

Environment Agency (2014). Freshwater macroinvertebrate analysis of riverine samples: Operational Instruction 024_08. Issued 28/01/2014. Environment Agency, Bristol.

Environment Agency (2012). *Hydroecological validation using macroinvertebrate data: Operational Instruction 318_10*. Environment Agency, Bristol.

Environment Agency (2009). Freshwater macro-invertebrate sampling in rivers. Operational Instruction 018 08. Issued 16/06/2009.

Extence, C. A., Chadd, R.P., England, J., Naura, M. & Pickwell, A. G. G. (2017) Application of the proportion of sediment-sensitive invertebrates (PSI) biomonitoring index. River Research and Applications, 22(10): pp. 1596-1605.

Mauvisseau, Q., Davy-Bowker, J., Bryson, D., Sweet, M.J., Souch, G.R. and Burian, A. (2019). First detection of a highly invasive freshwater amphipod *Crangonyx floridanus* (Bousfield, 1963) in the United Kingdom. Bioinvasions Records, 8.

Non-native Species Secretariat (2011a). Risk Assessment for *Elodea nuttallii* – Nuttall's Waterweed. Accessed July 2025. <u>www.nonnativespecies.org</u>.

Non-native Species Secretariat (2011b). Risk Assessment for *Pacifastacus leniusculus* - Signal crayfish. Accessed July 2025. www.nonnativespecies.org.

Sibley, S., Ferreira, M. and Innes, C. (2022). First record of the Ponto-Caspian amphipod *Chelicorophium robustum* (G.O. Sars, 1895) in Great Britain with notes on the method of collection. BioInvasions Records (2022) Vol, pp. 1-8.

Appendix 6.1 - Macroinvertebrate, invasive species and depressed river mussel baseline surveys (2024)

Classification - Public Page 49 of 53

Seddon, M.B., Killeen, I.J., & Fowles, A.P. (2014). A Review of the Non-Marine Mollusca of Great Britain: Species Status No. 17. NRW Evidence Report No 14. Natural Resources Wales, Bangor.

Thames Water (2024). South East Strategic Reservoir Option (SESRO) Gate 3: Aquatic Ecology Survey Specifications 2024 - River Thames.

Turley, M.D., Bilotta, G.S., Chadd, R.P., Extence, C.A., Brazier, R.E., Burnside, N.G., Pickwell, A.G.G. (2016). A sediment-specific family-level biomonitoring tool to identify the impacts of fine sediment in temperate rivers and streams. Ecological Indicators, 70: pp. 151165.

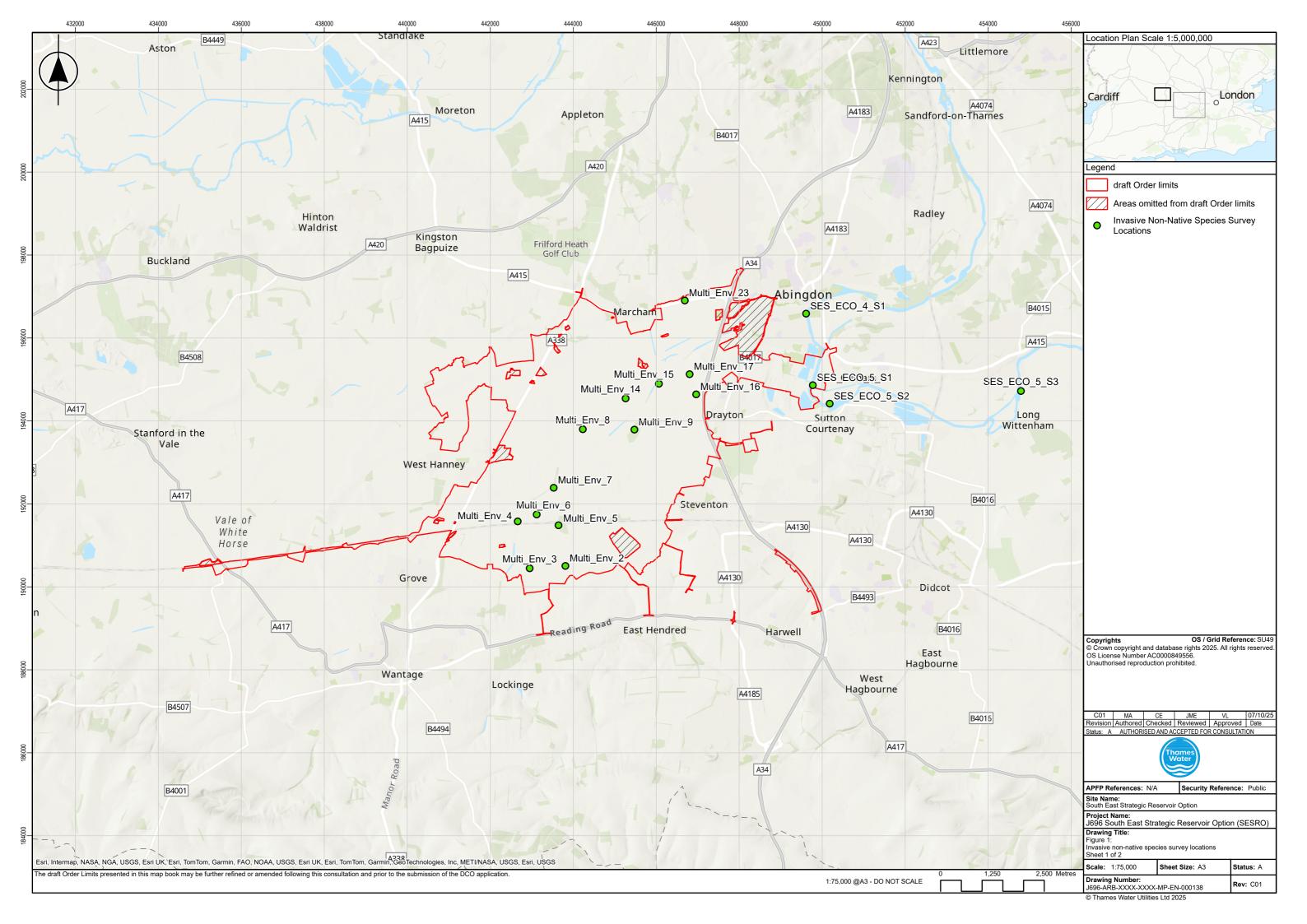
WFD-UKTAG (2021). River Assessment Method Benthic Invertebrate Fauna. Invertebrates (General Degradation): Walley, Hawkes, Paisley & Trigg (WHPT) metric in River Invertebrate Classification Tool (RICT).

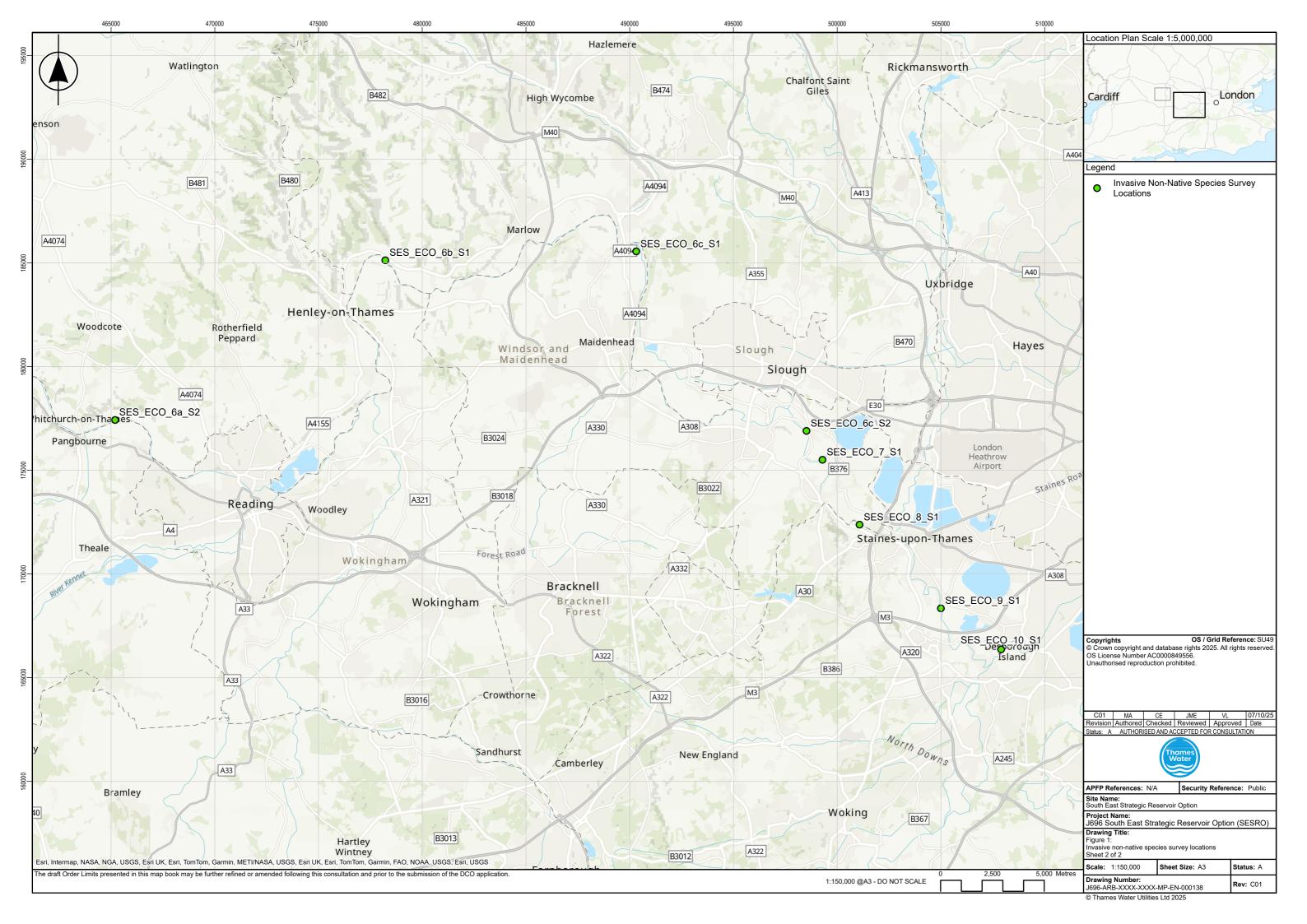
WFD UKTAG (2015) Classification of aquatic alien species according to their level of impact.

Wildlife and Countryside Act (1981) Schedule 9. Accessed July 2025. https://www.legislation.gov.uk/ukpga/1981/69/schedule/9.

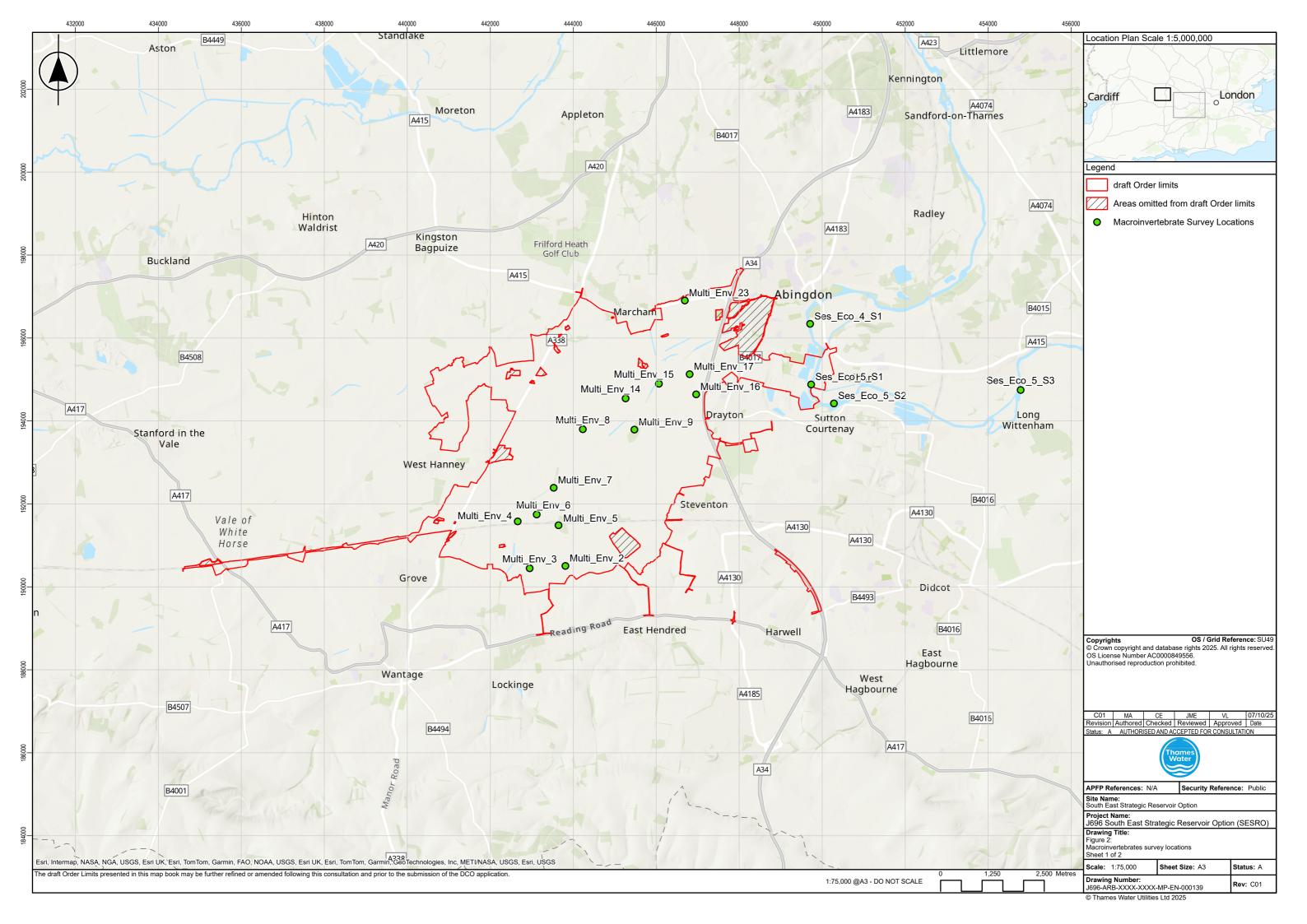
Wright, J. F. (1997). Introduction to RIVPACS. In: Wright, J.F., Sutcliffe, D.W., Furse, M.T.eds (1997) Assessing the biological quality of fresh waters: RIVPACS and other techniques. FBA Ambleside ISBN: 0-900386-62-2.

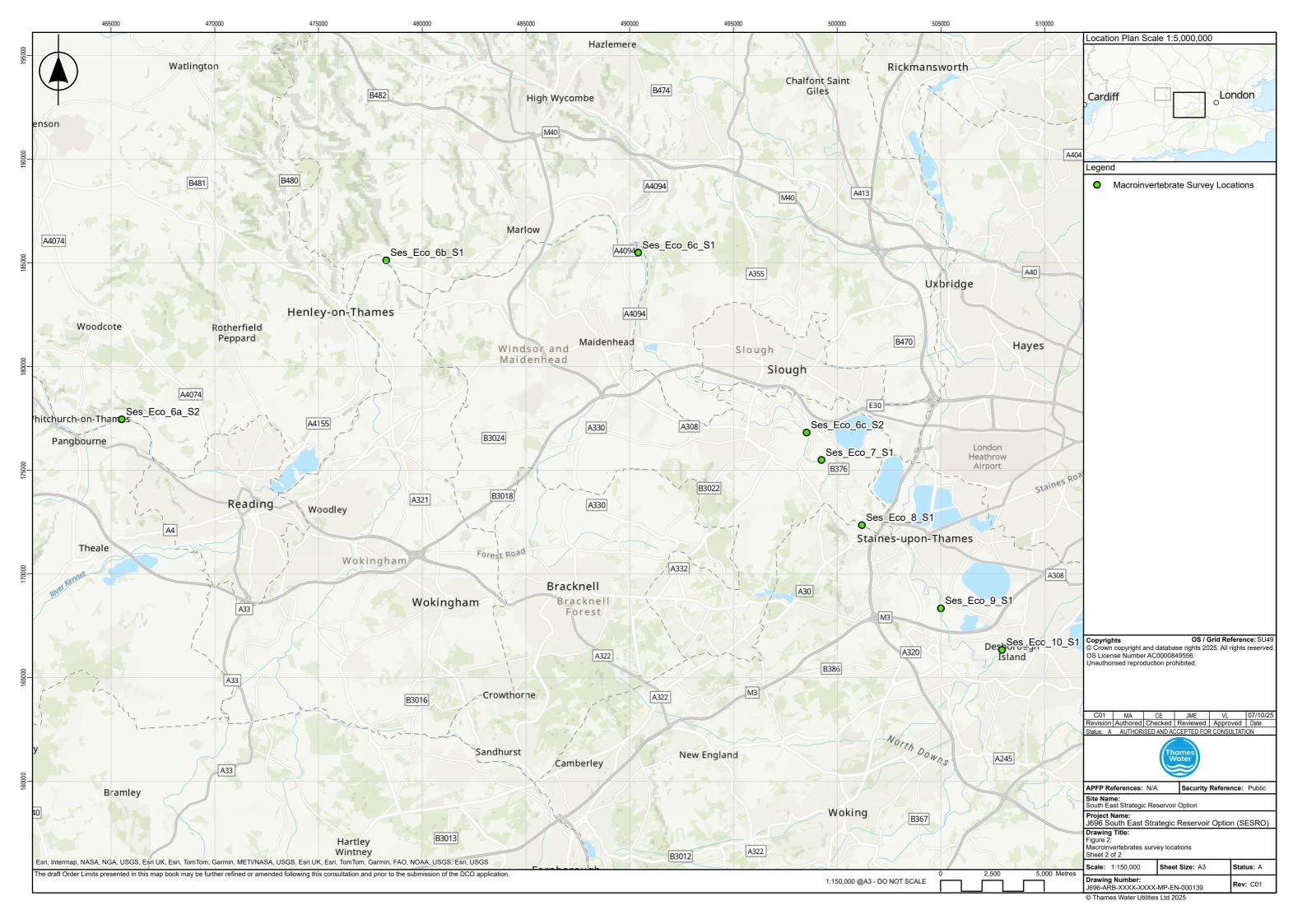
Zieritz, A. (2016). GB Non-native Organism Rapid Risk Assessment for Asian Clam (*Corbicula fluminea*). www.nonnativespecies.org.

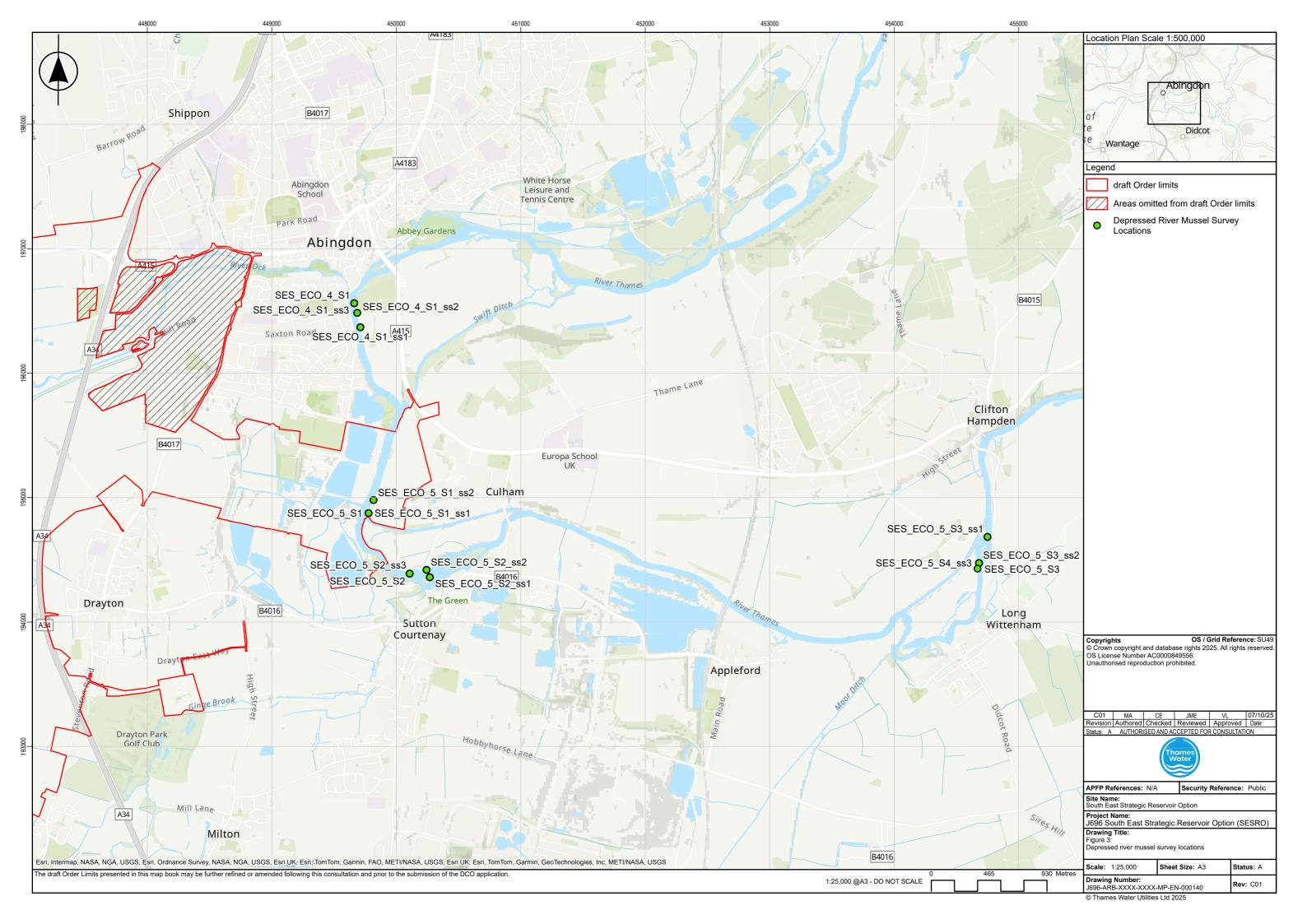

Appendix 6.1 - Macroinvertebrate, invasive species and depressed river mussel baseline surveys (2024)


Classification - Public Page 50 of 53




Appendix 6.1 - Macroinvertebrate, invasive species and depressed river mussel baseline surveys (2024)


Classification - Public Page 51 of 53



Classification - Public Page **53** of **53**

